跳至主要内容

ChatKonko

Konko

Konko API 是一个完全托管的 Web API,旨在帮助应用程序开发人员

  1. 选择适合其应用程序的开源或专有 LLM
  2. 构建与领先应用程序框架和完全托管的 API 集成的应用程序
  3. 微调更小的开源 LLM 以以极低的成本实现行业领先的性能
  4. 部署生产规模的 API,这些 API 能够满足安全、隐私、吞吐量和延迟 SLA,而无需使用 Konko AI 的 SOC 2 符合标准的多云基础设施进行基础设施设置或管理

此示例介绍了如何使用 LangChain 与 Konko ChatCompletion 模型 进行交互

要运行此笔记本,您需要 Konko API 密钥。登录我们的 Web 应用程序以 创建 API 密钥 来访问模型

from langchain_community.chat_models import ChatKonko
from langchain_core.messages import HumanMessage, SystemMessage

设置环境变量

  1. 您可以为以下内容设置环境变量
    1. KONKO_API_KEY(必需)
    2. OPENAI_API_KEY(可选)
  2. 在当前 shell 会话中,使用 export 命令
export KONKO_API_KEY={your_KONKO_API_KEY_here}
export OPENAI_API_KEY={your_OPENAI_API_KEY_here} #Optional

调用模型

Konko 概述页面 上查找模型

另一种查找在 Konko 实例上运行的模型列表的方法是通过此 端点

从这里,我们可以初始化我们的模型

chat = ChatKonko(max_tokens=400, model="meta-llama/llama-2-13b-chat")
messages = [
SystemMessage(content="You are a helpful assistant."),
HumanMessage(content="Explain Big Bang Theory briefly"),
]
chat(messages)
AIMessage(content="  Sure thing! The Big Bang Theory is a scientific theory that explains the origins of the universe. In short, it suggests that the universe began as an infinitely hot and dense point around 13.8 billion years ago and expanded rapidly. This expansion continues to this day, and it's what makes the universe look the way it does.\n\nHere's a brief overview of the key points:\n\n1. The universe started as a singularity, a point of infinite density and temperature.\n2. The singularity expanded rapidly, causing the universe to cool and expand.\n3. As the universe expanded, particles began to form, including protons, neutrons, and electrons.\n4. These particles eventually came together to form atoms, and later, stars and galaxies.\n5. The universe is still expanding today, and the rate of this expansion is accelerating.\n\nThat's the Big Bang Theory in a nutshell! It's a pretty mind-blowing idea when you think about it, and it's supported by a lot of scientific evidence. Do you have any other questions about it?")

此页面是否有帮助?


您也可以在 GitHub 上留下详细的反馈 on GitHub.