跳至主要内容

Bittensor

Bittensor 是一种类似于比特币的挖矿网络,其中包含旨在鼓励矿工贡献计算能力和知识的内置激励机制。

NIBittensorLLMNeural Internet 开发,由 Bittensor 提供支持。

此 LLM 通过为您提供来自Bittensor 协议的最佳响应展示了去中心化 AI 的真正潜力,该协议包含各种 AI 模型,例如OpenAILLaMA2 等。

用户可以在 验证器端点前端 上查看其日志、请求和 API 密钥。但是,目前禁止更改配置;否则,用户的查询将被阻止。

如果您遇到任何困难或有任何疑问,请随时联系我们的开发人员,请访问 GitHubDiscord 或加入我们的 discord 服务器以获取最新更新和查询 Neural Internet

NIBittensorLLM 的不同参数和响应处理

import json
from pprint import pprint

from langchain.globals import set_debug
from langchain_community.llms import NIBittensorLLM

set_debug(True)

# System parameter in NIBittensorLLM is optional but you can set whatever you want to perform with model
llm_sys = NIBittensorLLM(
system_prompt="Your task is to determine response based on user prompt.Explain me like I am technical lead of a project"
)
sys_resp = llm_sys(
"What is bittensor and What are the potential benefits of decentralized AI?"
)
print(f"Response provided by LLM with system prompt set is : {sys_resp}")

# The top_responses parameter can give multiple responses based on its parameter value
# This below code retrive top 10 miner's response all the response are in format of json

# Json response structure is
""" {
"choices": [
{"index": Bittensor's Metagraph index number,
"uid": Unique Identifier of a miner,
"responder_hotkey": Hotkey of a miner,
"message":{"role":"assistant","content": Contains actual response},
"response_ms": Time in millisecond required to fetch response from a miner}
]
} """

multi_response_llm = NIBittensorLLM(top_responses=10)
multi_resp = multi_response_llm.invoke("What is Neural Network Feeding Mechanism?")
json_multi_resp = json.loads(multi_resp)
pprint(json_multi_resp)
API 参考:set_debug | NIBittensorLLM

使用 NIBittensorLLM 与 LLMChain 和 PromptTemplate

from langchain.chains import LLMChain
from langchain.globals import set_debug
from langchain_community.llms import NIBittensorLLM
from langchain_core.prompts import PromptTemplate

set_debug(True)

template = """Question: {question}

Answer: Let's think step by step."""


prompt = PromptTemplate.from_template(template)

# System parameter in NIBittensorLLM is optional but you can set whatever you want to perform with model
llm = NIBittensorLLM(
system_prompt="Your task is to determine response based on user prompt."
)

llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "What is bittensor?"

llm_chain.run(question)

使用 NIBittensorLLM 与对话代理和 Google 搜索工具

from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_core.tools import Tool

search = GoogleSearchAPIWrapper()

tool = Tool(
name="Google Search",
description="Search Google for recent results.",
func=search.run,
)
from langchain import hub
from langchain.agents import (
AgentExecutor,
create_react_agent,
)
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import NIBittensorLLM

tools = [tool]

prompt = hub.pull("hwchase17/react")


llm = NIBittensorLLM(
system_prompt="Your task is to determine a response based on user prompt"
)

memory = ConversationBufferMemory(memory_key="chat_history")

agent = create_react_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, memory=memory)

response = agent_executor.invoke({"input": prompt})

此页面是否有帮助?


您还可以留下详细的反馈 在 GitHub 上.