跳至主要内容

Fireworks

注意

您当前位于一个页面上,该页面记录了将 Fireworks 模型用作文本补全模型。许多流行的 Fireworks 模型是聊天补全模型

您可能正在寻找此页面

Fireworks 通过创建一个创新的 AI 实验和生产平台来加速生成式 AI 的产品开发。

此示例介绍了如何使用 LangChain 与Fireworks 模型交互。

概述

集成详情

本地可序列化JS 支持包下载包最新版本
Fireworkslangchain_fireworksPyPI - DownloadsPyPI - Version

设置

凭据

登录Fireworks AI 获取 API 密钥以访问我们的模型,并确保将其设置为FIREWORKS_API_KEY环境变量。3. 使用模型 ID 设置您的模型。如果未设置模型,则默认模型为 fireworks-llama-v2-7b-chat。在fireworks.ai上查看完整的、最新的模型列表。

import getpass
import os

if "FIREWORKS_API_KEY" not in os.environ:
os.environ["FIREWORKS_API_KEY"] = getpass.getpass("Fireworks API Key:")

安装

您需要安装langchain_fireworks python 包才能使笔记本的其余部分正常工作。

%pip install -qU langchain-fireworks
Note: you may need to restart the kernel to use updated packages.

实例化

from langchain_fireworks import Fireworks

# Initialize a Fireworks model
llm = Fireworks(
model="accounts/fireworks/models/mixtral-8x7b-instruct",
base_url="https://api.fireworks.ai/inference/v1/completions",
)
API 参考:Fireworks

调用

您可以使用字符串提示直接调用模型以获取补全。

output = llm.invoke("Who's the best quarterback in the NFL?")
print(output)
 If Manningville Station, Lions rookie EJ Manuel's

使用多个提示调用

# Calling multiple prompts
output = llm.generate(
[
"Who's the best cricket player in 2016?",
"Who's the best basketball player in the league?",
]
)
print(output.generations)
[[Generation(text=" We're not just asking, we've done some research. We'")], [Generation(text=' The conversation is dominated by Kobe Bryant, Dwyane Wade,')]]

使用其他参数调用

# Setting additional parameters: temperature, max_tokens, top_p
llm = Fireworks(
model="accounts/fireworks/models/mixtral-8x7b-instruct",
temperature=0.7,
max_tokens=15,
top_p=1.0,
)
print(llm.invoke("What's the weather like in Kansas City in December?"))

December is a cold month in Kansas City, with temperatures of

链接

您可以使用 LangChain 表达式语言为非聊天模型创建简单的链。

from langchain_core.prompts import PromptTemplate
from langchain_fireworks import Fireworks

llm = Fireworks(
model="accounts/fireworks/models/mixtral-8x7b-instruct",
temperature=0.7,
max_tokens=15,
top_p=1.0,
)
prompt = PromptTemplate.from_template("Tell me a joke about {topic}?")
chain = prompt | llm

print(chain.invoke({"topic": "bears"}))
API 参考:PromptTemplate | Fireworks
 What do you call a bear with no teeth? A gummy bear!

流式传输

如果需要,您可以流式传输输出。

for token in chain.stream({"topic": "bears"}):
print(token, end="", flush=True)
 Why do bears hate shoes so much? They like to run around in their

API 参考

有关所有Fireworks LLM 功能和配置的详细文档,请访问 API 参考:https://python.langchain.ac.cn/v0.2/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html#langchain_fireworks.llms.Fireworks


此页面是否有帮助?


您也可以在 GitHub 上留下详细反馈 在 GitHub 上.