OpenAI
您当前位于一个文档页面,该页面介绍了 OpenAI 文本完成模型 的使用。最新且最流行的 OpenAI 模型是 聊天完成模型。 (You are currently on a page documenting the use of OpenAI text completion models. The latest and most popular OpenAI models are chat completion models.)
除非您专门使用 gpt-3.5-turbo-instruct
,否则您可能需要查看 此页面。 (Unless you are specifically using gpt-3.5-turbo-instruct
, you are probably looking for this page instead.)
OpenAI 提供一系列不同能力级别的模型,适用于不同的任务。 ( OpenAI offers a spectrum of models with different levels of power suitable for different tasks.)
此示例介绍如何使用 LangChain 与 OpenAI
模型 进行交互。 (This example goes over how to use LangChain to interact with OpenAI
models)
概述
集成详细信息
类 (Class) | 包 (Package) | 本地 (Local) | 可序列化 (Serializable) | JS 支持 (JS support) | 包下载 (Package downloads) | 包最新版本 (Package latest) |
---|---|---|---|---|---|---|
ChatOpenAI | langchain-openai | ❌ | beta | ✅ |
设置
要访问 OpenAI 模型,您需要创建一个 OpenAI 帐户,获取 API 密钥并安装 langchain-openai
集成包。 (To access OpenAI models you'll need to create an OpenAI account, get an API key, and install the langchain-openai
integration package.)
凭据
前往 https://platform.openai.com 注册 OpenAI 并生成 API 密钥。完成此操作后,设置 OPENAI_API_KEY 环境变量。 (Head to https://platform.openai.com to sign up to OpenAI and generate an API key. Once you've done this set the OPENAI_API_KEY environment variable)
import getpass
import os
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
如果您希望自动获得最佳的模型调用跟踪,您还可以通过取消以下注释来设置您的 LangSmith API 密钥。 (If you want to get automated best in-class tracing of your model calls you can also set your LangSmith API key by uncommenting below)
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
安装
LangChain OpenAI 集成位于 langchain-openai
包中。 (The LangChain OpenAI integration lives in the langchain-openai
package)
%pip install -qU langchain-openai
如果您需要指定您的组织 ID,您可以使用以下单元格。但是,如果您只属于一个组织或打算使用您的默认组织,则不需要此步骤。您可以 此处 查看您的默认组织。 (Should you need to specify your organization ID, you can use the following cell. However, it is not required if you are only part of a single organization or intend to use your default organization. You can check your default organization here.)
要指定您的组织,您可以使用以下代码: (To specify your organization, you can use this)
OPENAI_ORGANIZATION = getpass()
os.environ["OPENAI_ORGANIZATION"] = OPENAI_ORGANIZATION
实例化
现在我们可以实例化我们的模型对象并生成聊天完成内容。 (Now we can instantiate our model object and generate chat completions)
from langchain_openai import OpenAI
llm = OpenAI()
调用
llm.invoke("Hello how are you?")
'\n\nI am an AI and do not have emotions like humans do, so I am always functioning at my optimal level. Thank you for asking! How can I assist you today?'
链接
from langchain_core.prompts import PromptTemplate
prompt = PromptTemplate.from_template("How to say {input} in {output_language}:\n")
chain = prompt | llm
chain.invoke(
{
"output_language": "German",
"input": "I love programming.",
}
)
'\nIch liebe Programmieren.'
使用代理
如果您在显式代理后面,则可以指定 http_client 传递。 (If you are behind an explicit proxy, you can specify the http_client to pass through)
%pip install httpx
import httpx
openai = OpenAI(
model_name="gpt-3.5-turbo-instruct",
http_client=httpx.Client(proxies="http://proxy.yourcompany.com:8080"),
)
API 参考
有关所有 OpenAI
llm 功能和配置的详细文档,请查看 API 参考: https://python.langchain.ac.cn/v0.2/api_reference/openai/llms/langchain_openai.llms.base.OpenAI.html (For detailed documentation of all OpenAI
llm features and configurations head to the API reference: https://python.langchain.ac.cn/v0.2/api_reference/openai/llms/langchain_openai.llms.base.OpenAI.html)
相关
- LLM 概念指南 (LLM conceptual guide)
- LLM 操作指南 (LLM how-to guides)