跳至主要内容

RAGatouille

RAGatouille 使得使用 ColBERT 变得尽可能简单!ColBERT 是一种快速且准确的检索模型,能够在数毫秒内对大型文本集合进行可扩展的基于 BERT 的搜索。

我们可以通过多种方式使用 RAGatouille。

设置

集成位于 ragatouille 包中。

pip install -U ragatouille
from ragatouille import RAGPretrainedModel

RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
[Jan 10, 10:53:28] Loading segmented_maxsim_cpp extension (set COLBERT_LOAD_TORCH_EXTENSION_VERBOSE=True for more info)...
``````output
/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py:125: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.
warnings.warn(

检索器

我们可以将 RAGatouille 用作检索器。有关此方面的更多信息,请参阅 RAGatouille 检索器

文档压缩器

我们还可以将 RAGatouille 作为现成的重新排序器使用。这将允许我们使用 ColBERT 对来自任何通用检索器的检索结果进行重新排序。这样做的好处是,我们可以将其构建在任何现有索引之上,因此无需创建新的索引。我们可以通过在 LangChain 中使用 文档压缩器 抽象来实现这一点。

设置普通检索器

首先,让我们设置一个普通检索器作为示例。

import requests
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter


def get_wikipedia_page(title: str):
"""
Retrieve the full text content of a Wikipedia page.

:param title: str - Title of the Wikipedia page.
:return: str - Full text content of the page as raw string.
"""
# Wikipedia API endpoint
URL = "https://en.wikipedia.org/w/api.php"

# Parameters for the API request
params = {
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
}

# Custom User-Agent header to comply with Wikipedia's best practices
headers = {"User-Agent": "RAGatouille_tutorial/0.0.1 ([email protected])"}

response = requests.get(URL, params=params, headers=headers)
data = response.json()

# Extracting page content
page = next(iter(data["query"]["pages"].values()))
return page["extract"] if "extract" in page else None


text = get_wikipedia_page("Hayao_Miyazaki")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
texts = text_splitter.create_documents([text])
retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever(
search_kwargs={"k": 10}
)
docs = retriever.invoke("What animation studio did Miyazaki found")
docs[0]
Document(page_content='collaborative projects. In April 1984, Miyazaki opened his own office in Suginami Ward, naming it Nibariki.')

我们可以看到,结果与所提问题并不十分相关。

使用 ColBERT 作为重新排序器

from langchain.retrievers import ContextualCompressionRetriever

compression_retriever = ContextualCompressionRetriever(
base_compressor=RAG.as_langchain_document_compressor(), base_retriever=retriever
)

compressed_docs = compression_retriever.invoke(
"What animation studio did Miyazaki found"
)
/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/torch/amp/autocast_mode.py:250: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling
warnings.warn(
compressed_docs[0]
Document(page_content='In June 1985, Miyazaki, Takahata, Tokuma and Suzuki founded the animation production company Studio Ghibli, with funding from Tokuma Shoten. Studio Ghibli\'s first film, Laputa: Castle in the Sky (1986), employed the same production crew of Nausicaä. Miyazaki\'s designs for the film\'s setting were inspired by Greek architecture and "European urbanistic templates". Some of the architecture in the film was also inspired by a Welsh mining town; Miyazaki witnessed the mining strike upon his first', metadata={'relevance_score': 26.5194149017334})

这个答案更相关!


此页面是否有帮助?


您也可以在 GitHub 上留下详细的反馈。