DeepInfra
DeepInfra 是一种无服务器推理即服务,提供对各种大型语言模型 (LLM) 和嵌入模型 的访问。此笔记本介绍了如何将 LangChain 与 DeepInfra 结合使用以进行文本嵌入。
# sign up for an account: https://deepinfra.com/login?utm_source=langchain
from getpass import getpass
DEEPINFRA_API_TOKEN = getpass()
········
import os
os.environ["DEEPINFRA_API_TOKEN"] = DEEPINFRA_API_TOKEN
from langchain_community.embeddings import DeepInfraEmbeddings
API 参考:DeepInfraEmbeddings
embeddings = DeepInfraEmbeddings(
model_id="sentence-transformers/clip-ViT-B-32",
query_instruction="",
embed_instruction="",
)
docs = ["Dog is not a cat", "Beta is the second letter of Greek alphabet"]
document_result = embeddings.embed_documents(docs)
query = "What is the first letter of Greek alphabet"
query_result = embeddings.embed_query(query)
import numpy as np
query_numpy = np.array(query_result)
for doc_res, doc in zip(document_result, docs):
document_numpy = np.array(doc_res)
similarity = np.dot(query_numpy, document_numpy) / (
np.linalg.norm(query_numpy) * np.linalg.norm(document_numpy)
)
print(f'Cosine similarity between "{doc}" and query: {similarity}')
Cosine similarity between "Dog is not a cat" and query: 0.7489097144129355
Cosine similarity between "Beta is the second letter of Greek alphabet" and query: 0.9519380640702013