跳至主要内容

如何为 Graph-RAG 生成最佳提示

在本指南中,我们将介绍提示策略,以改善图数据库查询生成。我们将主要关注在你的提示中获取相关数据库特定信息的方法。

设置

首先,获取所需的包并设置环境变量

%pip install --upgrade --quiet  langchain langchain-community langchain-openai neo4j
Note: you may need to restart the kernel to use updated packages.

在本指南中,我们默认使用 OpenAI 模型,但你可以将其替换为你的首选模型提供商。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

# Uncomment the below to use LangSmith. Not required.
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
 ········

接下来,我们需要定义 Neo4j 凭据。请遵循 这些安装步骤 设置 Neo4j 数据库。

os.environ["NEO4J_URI"] = "bolt://:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

以下示例将创建与 Neo4j 数据库的连接,并将使用有关电影及其演员的示例数据对其进行填充。

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

# Import movie information

movies_query = """
LOAD CSV WITH HEADERS FROM
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
m.title = row.title,
m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') |
MERGE (p:Person {name:trim(director)})
MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') |
MERGE (p:Person {name:trim(actor)})
MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') |
MERGE (g:Genre {name:trim(genre)})
MERGE (m)-[:IN_GENRE]->(g))
"""

graph.query(movies_query)
API 参考:Neo4jGraph
[]

过滤图模式

有时,你可能需要在生成 Cypher 语句时关注图模式的特定子集。假设我们正在处理以下图模式

graph.refresh_schema()
print(graph.schema)
Node properties are the following:
Movie {imdbRating: FLOAT, id: STRING, released: DATE, title: STRING},Person {name: STRING},Genre {name: STRING}
Relationship properties are the following:

The relationships are the following:
(:Movie)-[:IN_GENRE]->(:Genre),(:Person)-[:DIRECTED]->(:Movie),(:Person)-[:ACTED_IN]->(:Movie)

假设我们想要从传递给 LLM 的模式表示中排除Genre节点。我们可以使用GraphCypherQAChain链的exclude参数来实现这一点。

from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
graph=graph, llm=llm, exclude_types=["Genre"], verbose=True
)
print(chain.graph_schema)
Node properties are the following:
Movie {imdbRating: FLOAT, id: STRING, released: DATE, title: STRING},Person {name: STRING}
Relationship properties are the following:

The relationships are the following:
(:Person)-[:DIRECTED]->(:Movie),(:Person)-[:ACTED_IN]->(:Movie)

少样本示例

在提示中包含将自然语言问题转换为针对我们数据库的有效 Cypher 查询的示例,通常会提高模型性能,尤其是在处理复杂查询时。

假设我们有以下示例

examples = [
{
"question": "How many artists are there?",
"query": "MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)",
},
{
"question": "Which actors played in the movie Casino?",
"query": "MATCH (m:Movie {{title: 'Casino'}})<-[:ACTED_IN]-(a) RETURN a.name",
},
{
"question": "How many movies has Tom Hanks acted in?",
"query": "MATCH (a:Person {{name: 'Tom Hanks'}})-[:ACTED_IN]->(m:Movie) RETURN count(m)",
},
{
"question": "List all the genres of the movie Schindler's List",
"query": "MATCH (m:Movie {{title: 'Schindler\\'s List'}})-[:IN_GENRE]->(g:Genre) RETURN g.name",
},
{
"question": "Which actors have worked in movies from both the comedy and action genres?",
"query": "MATCH (a:Person)-[:ACTED_IN]->(:Movie)-[:IN_GENRE]->(g1:Genre), (a)-[:ACTED_IN]->(:Movie)-[:IN_GENRE]->(g2:Genre) WHERE g1.name = 'Comedy' AND g2.name = 'Action' RETURN DISTINCT a.name",
},
{
"question": "Which directors have made movies with at least three different actors named 'John'?",
"query": "MATCH (d:Person)-[:DIRECTED]->(m:Movie)<-[:ACTED_IN]-(a:Person) WHERE a.name STARTS WITH 'John' WITH d, COUNT(DISTINCT a) AS JohnsCount WHERE JohnsCount >= 3 RETURN d.name",
},
{
"question": "Identify movies where directors also played a role in the film.",
"query": "MATCH (p:Person)-[:DIRECTED]->(m:Movie), (p)-[:ACTED_IN]->(m) RETURN m.title, p.name",
},
{
"question": "Find the actor with the highest number of movies in the database.",
"query": "MATCH (a:Actor)-[:ACTED_IN]->(m:Movie) RETURN a.name, COUNT(m) AS movieCount ORDER BY movieCount DESC LIMIT 1",
},
]

我们可以使用它们来创建少样本提示,如下所示

from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate

example_prompt = PromptTemplate.from_template(
"User input: {question}\nCypher query: {query}"
)
prompt = FewShotPromptTemplate(
examples=examples[:5],
example_prompt=example_prompt,
prefix="You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.\n\nHere is the schema information\n{schema}.\n\nBelow are a number of examples of questions and their corresponding Cypher queries.",
suffix="User input: {question}\nCypher query: ",
input_variables=["question", "schema"],
)
print(prompt.format(question="How many artists are there?", schema="foo"))
You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.

Here is the schema information
foo.

Below are a number of examples of questions and their corresponding Cypher queries.

User input: How many artists are there?
Cypher query: MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)

User input: Which actors played in the movie Casino?
Cypher query: MATCH (m:Movie {title: 'Casino'})<-[:ACTED_IN]-(a) RETURN a.name

User input: How many movies has Tom Hanks acted in?
Cypher query: MATCH (a:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(m:Movie) RETURN count(m)

User input: List all the genres of the movie Schindler's List
Cypher query: MATCH (m:Movie {title: 'Schindler\'s List'})-[:IN_GENRE]->(g:Genre) RETURN g.name

User input: Which actors have worked in movies from both the comedy and action genres?
Cypher query: MATCH (a:Person)-[:ACTED_IN]->(:Movie)-[:IN_GENRE]->(g1:Genre), (a)-[:ACTED_IN]->(:Movie)-[:IN_GENRE]->(g2:Genre) WHERE g1.name = 'Comedy' AND g2.name = 'Action' RETURN DISTINCT a.name

User input: How many artists are there?
Cypher query:

动态少样本示例

如果我们有足够的示例,我们可能只想在提示中包含最相关的示例,因为它们要么不适合模型的上下文窗口,要么是因为示例的尾部会分散模型的注意力。具体来说,对于任何输入,我们都希望包含与该输入最相关的示例。

我们可以使用 ExampleSelector 来实现这一点。在这种情况下,我们将使用一个 SemanticSimilarityExampleSelector,它将把示例存储在我们选择的向量数据库中。在运行时,它将在输入和我们的示例之间执行相似性搜索,并返回语义上最相似的示例。

from langchain_community.vectorstores import Neo4jVector
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings

example_selector = SemanticSimilarityExampleSelector.from_examples(
examples,
OpenAIEmbeddings(),
Neo4jVector,
k=5,
input_keys=["question"],
)
example_selector.select_examples({"question": "how many artists are there?"})
[{'query': 'MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)',
'question': 'How many artists are there?'},
{'query': "MATCH (a:Person {{name: 'Tom Hanks'}})-[:ACTED_IN]->(m:Movie) RETURN count(m)",
'question': 'How many movies has Tom Hanks acted in?'},
{'query': "MATCH (a:Person)-[:ACTED_IN]->(:Movie)-[:IN_GENRE]->(g1:Genre), (a)-[:ACTED_IN]->(:Movie)-[:IN_GENRE]->(g2:Genre) WHERE g1.name = 'Comedy' AND g2.name = 'Action' RETURN DISTINCT a.name",
'question': 'Which actors have worked in movies from both the comedy and action genres?'},
{'query': "MATCH (d:Person)-[:DIRECTED]->(m:Movie)<-[:ACTED_IN]-(a:Person) WHERE a.name STARTS WITH 'John' WITH d, COUNT(DISTINCT a) AS JohnsCount WHERE JohnsCount >= 3 RETURN d.name",
'question': "Which directors have made movies with at least three different actors named 'John'?"},
{'query': 'MATCH (a:Actor)-[:ACTED_IN]->(m:Movie) RETURN a.name, COUNT(m) AS movieCount ORDER BY movieCount DESC LIMIT 1',
'question': 'Find the actor with the highest number of movies in the database.'}]

要使用它,我们可以将 ExampleSelector 直接传递到我们的 FewShotPromptTemplate 中。

prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
prefix="You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.\n\nHere is the schema information\n{schema}.\n\nBelow are a number of examples of questions and their corresponding Cypher queries.",
suffix="User input: {question}\nCypher query: ",
input_variables=["question", "schema"],
)
print(prompt.format(question="how many artists are there?", schema="foo"))
You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.

Here is the schema information
foo.

Below are a number of examples of questions and their corresponding Cypher queries.

User input: How many artists are there?
Cypher query: MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)

User input: How many movies has Tom Hanks acted in?
Cypher query: MATCH (a:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(m:Movie) RETURN count(m)

User input: Which actors have worked in movies from both the comedy and action genres?
Cypher query: MATCH (a:Person)-[:ACTED_IN]->(:Movie)-[:IN_GENRE]->(g1:Genre), (a)-[:ACTED_IN]->(:Movie)-[:IN_GENRE]->(g2:Genre) WHERE g1.name = 'Comedy' AND g2.name = 'Action' RETURN DISTINCT a.name

User input: Which directors have made movies with at least three different actors named 'John'?
Cypher query: MATCH (d:Person)-[:DIRECTED]->(m:Movie)<-[:ACTED_IN]-(a:Person) WHERE a.name STARTS WITH 'John' WITH d, COUNT(DISTINCT a) AS JohnsCount WHERE JohnsCount >= 3 RETURN d.name

User input: Find the actor with the highest number of movies in the database.
Cypher query: MATCH (a:Actor)-[:ACTED_IN]->(m:Movie) RETURN a.name, COUNT(m) AS movieCount ORDER BY movieCount DESC LIMIT 1

User input: how many artists are there?
Cypher query:
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
graph=graph, llm=llm, cypher_prompt=prompt, verbose=True
)
chain.invoke("How many actors are in the graph?")


> Entering new GraphCypherQAChain chain...
Generated Cypher:
MATCH (a:Person)-[:ACTED_IN]->(:Movie) RETURN count(DISTINCT a)
Full Context:
[{'count(DISTINCT a)': 967}]

> Finished chain.
{'query': 'How many actors are in the graph?',
'result': 'There are 967 actors in the graph.'}

此页面是否有帮助?


您也可以留下详细的反馈 在 GitHub 上.

© . This site is unofficial and not affiliated with LangChain, Inc.