ChatAI21
概述
此笔记本介绍如何开始使用 AI21 聊天模型。请注意,不同的聊天模型支持不同的参数。请参阅AI21 文档,以了解您选择的模型中的参数的更多信息。查看所有 AI21 的 LangChain 组件。
集成详细信息
类 | 包 | 本地 | 可序列化 | JS 支持 | 包下载 | 包最新版本 |
---|---|---|---|---|---|---|
ChatAI21 | langchain-ai21 | ❌ | 测试版 | ✅ |
模型功能
工具调用 | 结构化输出 | JSON 模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流 | 原生异步 | 令牌使用情况 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ |
设置
凭据
我们需要获取AI21 API 密钥并设置AI21_API_KEY
环境变量
import os
from getpass import getpass
if "AI21_API_KEY" not in os.environ:
os.environ["AI21_API_KEY"] = getpass()
如果您希望自动跟踪您的模型调用,您还可以设置您的LangSmith API 密钥,方法是取消以下注释
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
安装
!pip install -qU langchain-ai21
实例化
现在我们可以实例化我们的模型对象并生成聊天完成
from langchain_ai21 import ChatAI21
llm = ChatAI21(model="jamba-instruct", temperature=0)
调用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
链接
我们可以使用提示模板将我们的模型链接,如下所示
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
工具调用/函数调用
此示例演示如何使用 AI21 模型进行工具调用
import os
from getpass import getpass
from langchain_ai21.chat_models import ChatAI21
from langchain_core.messages import HumanMessage, SystemMessage, ToolMessage
from langchain_core.tools import tool
from langchain_core.utils.function_calling import convert_to_openai_tool
if "AI21_API_KEY" not in os.environ:
os.environ["AI21_API_KEY"] = getpass()
@tool
def get_weather(location: str, date: str) -> str:
"""“Provide the weather for the specified location on the given date.”"""
if location == "New York" and date == "2024-12-05":
return "25 celsius"
elif location == "New York" and date == "2024-12-06":
return "27 celsius"
elif location == "London" and date == "2024-12-05":
return "22 celsius"
return "32 celsius"
llm = ChatAI21(model="jamba-1.5-mini")
llm_with_tools = llm.bind_tools([convert_to_openai_tool(get_weather)])
chat_messages = [
SystemMessage(
content="You are a helpful assistant. You can use the provided tools "
"to assist with various tasks and provide accurate information"
)
]
human_messages = [
HumanMessage(
content="What is the forecast for the weather in New York on December 5, 2024?"
),
HumanMessage(content="And what about the 2024-12-06?"),
HumanMessage(content="OK, thank you."),
HumanMessage(content="What is the expected weather in London on December 5, 2024?"),
]
for human_message in human_messages:
print(f"User: {human_message.content}")
chat_messages.append(human_message)
response = llm_with_tools.invoke(chat_messages)
chat_messages.append(response)
if response.tool_calls:
tool_call = response.tool_calls[0]
if tool_call["name"] == "get_weather":
weather = get_weather.invoke(
{
"location": tool_call["args"]["location"],
"date": tool_call["args"]["date"],
}
)
chat_messages.append(
ToolMessage(content=weather, tool_call_id=tool_call["id"])
)
llm_answer = llm_with_tools.invoke(chat_messages)
print(f"Assistant: {llm_answer.content}")
else:
print(f"Assistant: {response.content}")
API 参考
有关所有 ChatAI21 功能和配置的详细文档,请访问 API 参考:https://python.langchain.ac.cn/api_reference/ai21/chat_models/langchain_ai21.chat_models.ChatAI21.html