跳到主要内容

DSPy

DSPy 是一个很棒的 LLM 框架,它引入了一个自动编译器,该编译器教 LLM 如何执行程序中的声明性步骤。具体来说,DSPy 编译器将在内部跟踪您的程序,然后为大型 LLM 制作高质量的提示(或为小型 LLM 训练自动微调),以教它们您任务的步骤。

感谢 Omar Khattab,我们现在有了集成!它可以通过一些小的修改与任何 LCEL 链一起使用。

这个简短的教程演示了此概念验证功能的工作原理。这不会让您获得 DSPy 或 LangChain 的全部功能,但如果需求量很大,我们将对其进行扩展。

注意:此示例与 Omar 为 DSPy 编写的原始示例略有修改。如果您对 LangChain <> DSPy 感兴趣,但来自 DSPy 方面,我建议您查看一下。您可以在此处找到它。

让我们看一个例子。在此示例中,我们将创建一个简单的 RAG 管道。我们将使用 DSPy 来“编译”我们的程序并学习优化的提示。

此示例使用 ColBERTv2 模型。请参阅 ColBERTv2:通过轻量级延迟交互实现有效且高效的检索 论文。

安装依赖项

!pip install -U dspy-ai !pip install -U openai jinja2 !pip install -U langchain langchain-community langchain-openai langchain-core

设置

我们将使用 OpenAI,因此我们应该设置一个 API 密钥

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

我们现在可以设置我们的检索器。对于我们的检索器,我们将使用通过 DSPy 的 ColBERT 检索器,尽管这适用于任何检索器。

import dspy

colbertv2 = dspy.ColBERTv2(url="http://20.102.90.50:2017/wiki17_abstracts")
from langchain.globals import set_llm_cache
from langchain_community.cache import SQLiteCache
from langchain_openai import OpenAI

set_llm_cache(SQLiteCache(database_path="cache.db"))

llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)


def retrieve(inputs):
return [doc["text"] for doc in colbertv2(inputs["question"], k=5)]
colbertv2("cycling")
[{'text': 'Cycling | Cycling, also called bicycling or biking, is the use of bicycles for transport, recreation, exercise or sport. Persons engaged in cycling are referred to as "cyclists", "bikers", or less commonly, as "bicyclists". Apart from two-wheeled bicycles, "cycling" also includes the riding of unicycles, tricycles, quadracycles, recumbent and similar human-powered vehicles (HPVs).',
'pid': 2201868,
'rank': 1,
'score': 27.078739166259766,
'prob': 0.3544841299722533,
'long_text': 'Cycling | Cycling, also called bicycling or biking, is the use of bicycles for transport, recreation, exercise or sport. Persons engaged in cycling are referred to as "cyclists", "bikers", or less commonly, as "bicyclists". Apart from two-wheeled bicycles, "cycling" also includes the riding of unicycles, tricycles, quadracycles, recumbent and similar human-powered vehicles (HPVs).'},
{'text': 'Cycling (ice hockey) | In ice hockey, cycling is an offensive strategy that moves the puck along the boards in the offensive zone to create a scoring chance by making defenders tired or moving them out of position.',
'pid': 312153,
'rank': 2,
'score': 26.109302520751953,
'prob': 0.13445464524590262,
'long_text': 'Cycling (ice hockey) | In ice hockey, cycling is an offensive strategy that moves the puck along the boards in the offensive zone to create a scoring chance by making defenders tired or moving them out of position.'},
{'text': 'Bicycle | A bicycle, also called a cycle or bike, is a human-powered, pedal-driven, single-track vehicle, having two wheels attached to a frame, one behind the other. A is called a cyclist, or bicyclist.',
'pid': 2197695,
'rank': 3,
'score': 25.849220275878906,
'prob': 0.10366294133944996,
'long_text': 'Bicycle | A bicycle, also called a cycle or bike, is a human-powered, pedal-driven, single-track vehicle, having two wheels attached to a frame, one behind the other. A is called a cyclist, or bicyclist.'},
{'text': 'USA Cycling | USA Cycling or USAC, based in Colorado Springs, Colorado, is the national governing body for bicycle racing in the United States. It covers the disciplines of road, track, mountain bike, cyclo-cross, and BMX across all ages and ability levels. In 2015, USAC had a membership of 61,631 individual members.',
'pid': 3821927,
'rank': 4,
'score': 25.61395263671875,
'prob': 0.08193096873942958,
'long_text': 'USA Cycling | USA Cycling or USAC, based in Colorado Springs, Colorado, is the national governing body for bicycle racing in the United States. It covers the disciplines of road, track, mountain bike, cyclo-cross, and BMX across all ages and ability levels. In 2015, USAC had a membership of 61,631 individual members.'},
{'text': 'Vehicular cycling | Vehicular cycling (also known as bicycle driving) is the practice of riding bicycles on roads in a manner that is in accordance with the principles for driving in traffic.',
'pid': 3058888,
'rank': 5,
'score': 25.35515785217285,
'prob': 0.06324918635213703,
'long_text': 'Vehicular cycling | Vehicular cycling (also known as bicycle driving) is the practice of riding bicycles on roads in a manner that is in accordance with the principles for driving in traffic.'},
{'text': 'Road cycling | Road cycling is the most widespread form of cycling. It includes recreational, racing, and utility cycling. Road cyclists are generally expected to obey the same rules and laws as other vehicle drivers or riders and may also be vehicular cyclists.',
'pid': 3392359,
'rank': 6,
'score': 25.274639129638672,
'prob': 0.058356079351563846,
'long_text': 'Road cycling | Road cycling is the most widespread form of cycling. It includes recreational, racing, and utility cycling. Road cyclists are generally expected to obey the same rules and laws as other vehicle drivers or riders and may also be vehicular cyclists.'},
{'text': 'Cycling South Africa | Cycling South Africa or Cycling SA is the national governing body of cycle racing in South Africa. Cycling SA is a member of the "Confédération Africaine de Cyclisme" and the "Union Cycliste Internationale" (UCI). It is affiliated to the South African Sports Confederation and Olympic Committee (SASCOC) as well as the Department of Sport and Recreation SA. Cycling South Africa regulates the five major disciplines within the sport, both amateur and professional, which include: road cycling, mountain biking, BMX biking, track cycling and para-cycling.',
'pid': 2508026,
'rank': 7,
'score': 25.24260711669922,
'prob': 0.05651643767006817,
'long_text': 'Cycling South Africa | Cycling South Africa or Cycling SA is the national governing body of cycle racing in South Africa. Cycling SA is a member of the "Confédération Africaine de Cyclisme" and the "Union Cycliste Internationale" (UCI). It is affiliated to the South African Sports Confederation and Olympic Committee (SASCOC) as well as the Department of Sport and Recreation SA. Cycling South Africa regulates the five major disciplines within the sport, both amateur and professional, which include: road cycling, mountain biking, BMX biking, track cycling and para-cycling.'},
{'text': 'Cycle sport | Cycle sport is competitive physical activity using bicycles. There are several categories of bicycle racing including road bicycle racing, time trialling, cyclo-cross, mountain bike racing, track cycling, BMX, and cycle speedway. Non-racing cycling sports include artistic cycling, cycle polo, freestyle BMX and mountain bike trials. The Union Cycliste Internationale (UCI) is the world governing body for cycling and international competitive cycling events. The International Human Powered Vehicle Association is the governing body for human-powered vehicles that imposes far fewer restrictions on their design than does the UCI. The UltraMarathon Cycling Association is the governing body for many ultra-distance cycling races.',
'pid': 3394121,
'rank': 8,
'score': 25.170495986938477,
'prob': 0.05258444735141742,
'long_text': 'Cycle sport | Cycle sport is competitive physical activity using bicycles. There are several categories of bicycle racing including road bicycle racing, time trialling, cyclo-cross, mountain bike racing, track cycling, BMX, and cycle speedway. Non-racing cycling sports include artistic cycling, cycle polo, freestyle BMX and mountain bike trials. The Union Cycliste Internationale (UCI) is the world governing body for cycling and international competitive cycling events. The International Human Powered Vehicle Association is the governing body for human-powered vehicles that imposes far fewer restrictions on their design than does the UCI. The UltraMarathon Cycling Association is the governing body for many ultra-distance cycling races.'},
{'text': "Cycling UK | Cycling UK is the brand name of the Cyclists' Touring Club or CTC. It is a charitable membership organisation supporting cyclists and promoting bicycle use. Cycling UK is registered at Companies House (as “Cyclists’ Touring Club”), and covered by company law; it is the largest such organisation in the UK. It works at a national and local level to lobby for cyclists' needs and wants, provides services to members, and organises local groups for local activism and those interested in recreational cycling. The original Cyclists' Touring Club began in the nineteenth century with a focus on amateur road cycling but these days has a much broader sphere of interest encompassing everyday transport, commuting and many forms of recreational cycling. Prior to April 2016, Cycling UK operated under the brand CTC, the national cycling charity. As of January 2007, the organisation's president was the newsreader Jon Snow.",
'pid': 1841483,
'rank': 9,
'score': 25.166988372802734,
'prob': 0.05240032450529368,
'long_text': "Cycling UK | Cycling UK is the brand name of the Cyclists' Touring Club or CTC. It is a charitable membership organisation supporting cyclists and promoting bicycle use. Cycling UK is registered at Companies House (as “Cyclists’ Touring Club”), and covered by company law; it is the largest such organisation in the UK. It works at a national and local level to lobby for cyclists' needs and wants, provides services to members, and organises local groups for local activism and those interested in recreational cycling. The original Cyclists' Touring Club began in the nineteenth century with a focus on amateur road cycling but these days has a much broader sphere of interest encompassing everyday transport, commuting and many forms of recreational cycling. Prior to April 2016, Cycling UK operated under the brand CTC, the national cycling charity. As of January 2007, the organisation's president was the newsreader Jon Snow."},
{'text': 'Cycling in the Netherlands | Cycling is a ubiquitous mode of transport in the Netherlands, with 36% of the people listing the bicycle as their most frequent mode of transport on a typical day as opposed to the car by 45% and public transport by 11%. Cycling has a modal share of 27% of all trips (urban and rural) nationwide. In cities this is even higher, such as Amsterdam which has 38%, though the smaller Dutch cities well exceed that: for instance Zwolle (pop. ~123,000) has 46% and the university town of Groningen (pop. ~198,000) has 31%. This high modal share for bicycle travel is enabled by excellent cycling infrastructure such as cycle paths, cycle tracks, protected intersections, ubiquitous bicycle parking and by making cycling routes shorter, quicker and more direct than car routes.',
'pid': 1196118,
'rank': 10,
'score': 24.954299926757812,
'prob': 0.0423608394724844,
'long_text': 'Cycling in the Netherlands | Cycling is a ubiquitous mode of transport in the Netherlands, with 36% of the people listing the bicycle as their most frequent mode of transport on a typical day as opposed to the car by 45% and public transport by 11%. Cycling has a modal share of 27% of all trips (urban and rural) nationwide. In cities this is even higher, such as Amsterdam which has 38%, though the smaller Dutch cities well exceed that: for instance Zwolle (pop. ~123,000) has 46% and the university town of Groningen (pop. ~198,000) has 31%. This high modal share for bicycle travel is enabled by excellent cycling infrastructure such as cycle paths, cycle tracks, protected intersections, ubiquitous bicycle parking and by making cycling routes shorter, quicker and more direct than car routes.'}]

常规 LCEL

首先,让我们像往常一样使用 LCEL 创建一个简单的 RAG 管道。

为了说明,让我们解决以下任务。

任务: 构建一个 RAG 系统以生成信息丰富的推文。

  • 输入: 一个事实性的问题,可能相当复杂。

  • 输出: 一条引人入胜的推文,正确回答从检索到的信息中提出的问题。

让我们使用 LangChain 的表达式语言 (LCEL) 来说明这一点。这里的任何提示都可以,我们将使用 DSPy 优化最终提示。

考虑到这一点,让我们将其保持在最低限度:给定 {context},将问题 {question} 作为推文回答。

# From LangChain, import standard modules for prompting.
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough

# Just a simple prompt for this task. It's fine if it's complex too.
prompt = PromptTemplate.from_template(
"Given {context}, answer the question `{question}` as a tweet."
)

# This is how you'd normally build a chain with LCEL. This chain does retrieval then generation (RAG).
vanilla_chain = (
RunnablePassthrough.assign(context=retrieve) | prompt | llm | StrOutputParser()
)

LCEL <> DSPy

为了将 LangChain 与 DSPy 一起使用,您需要进行两个小的修改

LangChainPredict

您需要将 prompt | llm 更改为使用 dspy 中的 LangChainPredict(prompt, llm)

这是一个包装器,它将您的提示和 llm 绑定在一起,以便您可以优化它们

LangChainModule

这是一个包装您的最终 LCEL 链的包装器,以便 DSPy 可以优化整个链

# From DSPy, import the modules that know how to interact with LangChain LCEL.
from dspy.predict.langchain import LangChainModule, LangChainPredict

# This is how to wrap it so it behaves like a DSPy program.
# Just Replace every pattern like `prompt | llm` with `LangChainPredict(prompt, llm)`.
zeroshot_chain = (
RunnablePassthrough.assign(context=retrieve)
| LangChainPredict(prompt, llm)
| StrOutputParser()
)
# Now we wrap it in LangChainModule
zeroshot_chain = LangChainModule(
zeroshot_chain
) # then wrap the chain in a DSPy module.

尝试模块

之后,我们可以将其用作 LangChain 可运行程序和 DSPy 模块!

question = "In what region was Eddy Mazzoleni born?"

zeroshot_chain.invoke({"question": question})
' Eddy Mazzoleni, born in Bergamo, Italy, is a professional road cyclist who rode for UCI ProTour Astana Team. #cyclist #Italy'

啊,听起来不错!(从技术上讲,它并不完美:我们要求的是区域而不是城市。我们可以在下面做得更好。)

手动检查问题和答案对于了解您的系统非常重要。但是,一个好的系统设计者总是会迭代地对他们的工作进行基准测试,以量化进度!

为此,我们需要两件事:我们想要最大化的指标以及系统示例的(小型)数据集。

是否存在针对优秀推文的预定义指标?我应该手动标记 100,000 条推文吗?可能不应该。不过,我们可以轻松地做一些合理的事情,直到您开始在生产中获得数据!

加载数据

为了编译我们的链,我们需要一个数据集来使用。这个数据集只需要包含原始的输入和输出。为了我们的目的,我们将使用 HotPotQA 数据集。

注意:请注意,我们的数据集实际上不包含任何推文!它只有问题和答案。没关系,我们的指标会负责评估推文形式的输出。

import dspy
from dspy.datasets import HotPotQA

# Load the dataset.
dataset = HotPotQA(
train_seed=1,
train_size=200,
eval_seed=2023,
dev_size=200,
test_size=0,
keep_details=True,
)

# Tell DSPy that the 'question' field is the input. Any other fields are labels and/or metadata.
trainset = [x.without("id", "type").with_inputs("question") for x in dataset.train]
devset = [x.without("id", "type").with_inputs("question") for x in dataset.dev]
valset, devset = devset[:50], devset[50:]
/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/datasets/table.py:1421: FutureWarning: promote has been superseded by mode='default'.
table = cls._concat_blocks(blocks, axis=0)

定义一个指标

现在我们需要定义一个指标。这将用于确定哪些运行是成功的,我们可以从中学习。这里我们将使用 DSPy 的指标,当然您也可以编写自己的指标。

# Define the signature for autoamtic assessments.
class Assess(dspy.Signature):
"""Assess the quality of a tweet along the specified dimension."""

context = dspy.InputField(desc="ignore if N/A")
assessed_text = dspy.InputField()
assessment_question = dspy.InputField()
assessment_answer = dspy.OutputField(desc="Yes or No")


gpt4T = dspy.OpenAI(model="gpt-4-1106-preview", max_tokens=1000, model_type="chat")
METRIC = None


def metric(gold, pred, trace=None):
question, answer, tweet = gold.question, gold.answer, pred.output
context = colbertv2(question, k=5)

engaging = "Does the assessed text make for a self-contained, engaging tweet?"
faithful = "Is the assessed text grounded in the context? Say no if it includes significant facts not in the context."
correct = (
f"The text above is should answer `{question}`. The gold answer is `{answer}`."
)
correct = f"{correct} Does the assessed text above contain the gold answer?"

with dspy.context(lm=gpt4T):
faithful = dspy.Predict(Assess)(
context=context, assessed_text=tweet, assessment_question=faithful
)
correct = dspy.Predict(Assess)(
context="N/A", assessed_text=tweet, assessment_question=correct
)
engaging = dspy.Predict(Assess)(
context="N/A", assessed_text=tweet, assessment_question=engaging
)

correct, engaging, faithful = [
m.assessment_answer.split()[0].lower() == "yes"
for m in [correct, engaging, faithful]
]
score = (correct + engaging + faithful) if correct and (len(tweet) <= 280) else 0

if METRIC is not None:
if METRIC == "correct":
return correct
if METRIC == "engaging":
return engaging
if METRIC == "faithful":
return faithful

if trace is not None:
return score >= 3
return score / 3.0

评估基线

好的,让我们评估一下我们链的未优化“零样本”版本,该版本是从我们的 LangChain LCEL 对象转换而来的。

from dspy.evaluate.evaluate import Evaluate
evaluate = Evaluate(
metric=metric, devset=devset, num_threads=8, display_progress=True, display_table=5
)
evaluate(zeroshot_chain)
Average Metric: 62.99999999999998 / 150  (42.0): 100%|██| 150/150 [01:14<00:00,  2.02it/s]
``````output
Average Metric: 62.99999999999998 / 150 (42.0%)
``````output

/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/dspy/evaluate/evaluate.py:126: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
df = df.applymap(truncate_cell)
<style type="text/css">
#T_390d8 th {
text-align: left;
}
#T_390d8 td {
text-align: left;
}
#T_390d8_row0_col0, #T_390d8_row0_col1, #T_390d8_row0_col2, #T_390d8_row0_col3, #T_390d8_row0_col4, #T_390d8_row0_col5, #T_390d8_row1_col0, #T_390d8_row1_col1, #T_390d8_row1_col2, #T_390d8_row1_col3, #T_390d8_row1_col4, #T_390d8_row1_col5, #T_390d8_row2_col0, #T_390d8_row2_col1, #T_390d8_row2_col2, #T_390d8_row2_col3, #T_390d8_row2_col4, #T_390d8_row2_col5, #T_390d8_row3_col0, #T_390d8_row3_col1, #T_390d8_row3_col2, #T_390d8_row3_col3, #T_390d8_row3_col4, #T_390d8_row3_col5, #T_390d8_row4_col0, #T_390d8_row4_col1, #T_390d8_row4_col2, #T_390d8_row4_col3, #T_390d8_row4_col4, #T_390d8_row4_col5 {
text-align: left;
white-space: pre-wrap;
word-wrap: break-word;
max-width: 400px;
}
</style>
<table id="T_390d8">
<thead>
<tr>
<th class="blank level0" >&nbsp;</th>
<th id="T_390d8_level0_col0" class="col_heading level0 col0" >question</th>
<th id="T_390d8_level0_col1" class="col_heading level0 col1" >answer</th>
<th id="T_390d8_level0_col2" class="col_heading level0 col2" >gold_titles</th>
<th id="T_390d8_level0_col3" class="col_heading level0 col3" >output</th>
<th id="T_390d8_level0_col4" class="col_heading level0 col4" >tweet_response</th>
<th id="T_390d8_level0_col5" class="col_heading level0 col5" >metric</th>
</tr>
</thead>
<tbody>
<tr>
<th id="T_390d8_level0_row0" class="row_heading level0 row0" >0</th>
<td id="T_390d8_row0_col0" class="data row0 col0" >Who was a producer who produced albums for both rock bands Juke Karten and Thirty Seconds to Mars?</td>
<td id="T_390d8_row0_col1" class="data row0 col1" >Brian Virtue</td>
<td id="T_390d8_row0_col2" class="data row0 col2" >{'Thirty Seconds to Mars', 'Levolution (album)'}</td>
<td id="T_390d8_row0_col3" class="data row0 col3" >Brian Virtue, who has worked with bands like Jane's Addiction and Velvet Revolver, produced albums for both Juke Kartel and Thirty Seconds to Mars. #BrianVirtue...</td>
<td id="T_390d8_row0_col4" class="data row0 col4" >Brian Virtue, who has worked with bands like Jane's Addiction and Velvet Revolver, produced albums for both Juke Kartel and Thirty Seconds to Mars. #BrianVirtue...</td>
<td id="T_390d8_row0_col5" class="data row0 col5" >1.0</td>
</tr>
<tr>
<th id="T_390d8_level0_row1" class="row_heading level0 row1" >1</th>
<td id="T_390d8_row1_col0" class="data row1 col0" >Are both the University of Chicago and Syracuse University public universities? </td>
<td id="T_390d8_row1_col1" class="data row1 col1" >no</td>
<td id="T_390d8_row1_col2" class="data row1 col2" >{'Syracuse University', 'University of Chicago'}</td>
<td id="T_390d8_row1_col3" class="data row1 col3" > No, only Syracuse University is a public university. The University of Chicago is a private research university. #university #publicvsprivate</td>
<td id="T_390d8_row1_col4" class="data row1 col4" > No, only Syracuse University is a public university. The University of Chicago is a private research university. #university #publicvsprivate</td>
<td id="T_390d8_row1_col5" class="data row1 col5" >0.3333333333333333</td>
</tr>
<tr>
<th id="T_390d8_level0_row2" class="row_heading level0 row2" >2</th>
<td id="T_390d8_row2_col0" class="data row2 col0" >In what region was Eddy Mazzoleni born?</td>
<td id="T_390d8_row2_col1" class="data row2 col1" >Lombardy, northern Italy</td>
<td id="T_390d8_row2_col2" class="data row2 col2" >{'Eddy Mazzoleni', 'Bergamo'}</td>
<td id="T_390d8_row2_col3" class="data row2 col3" > Eddy Mazzoleni, born in Bergamo, Italy, is a professional road cyclist who rode for UCI ProTour Astana Team. #cyclist #Italy</td>
<td id="T_390d8_row2_col4" class="data row2 col4" > Eddy Mazzoleni, born in Bergamo, Italy, is a professional road cyclist who rode for UCI ProTour Astana Team. #cyclist #Italy</td>
<td id="T_390d8_row2_col5" class="data row2 col5" >0.0</td>
</tr>
<tr>
<th id="T_390d8_level0_row3" class="row_heading level0 row3" >3</th>
<td id="T_390d8_row3_col0" class="data row3 col0" >Who edited the 1990 American romantic comedy film directed by Garry Marshall?</td>
<td id="T_390d8_row3_col1" class="data row3 col1" >Raja Raymond Gosnell</td>
<td id="T_390d8_row3_col2" class="data row3 col2" >{'Raja Gosnell', 'Pretty Woman'}</td>
<td id="T_390d8_row3_col3" class="data row3 col3" > J. F. Lawton wrote the screenplay for Pretty Woman, the 1990 American romantic comedy film directed by Garry Marshall. #PrettyWoman #GarryMarshall #JFLawton</td>
<td id="T_390d8_row3_col4" class="data row3 col4" > J. F. Lawton wrote the screenplay for Pretty Woman, the 1990 American romantic comedy film directed by Garry Marshall. #PrettyWoman #GarryMarshall #JFLawton</td>
<td id="T_390d8_row3_col5" class="data row3 col5" >0.0</td>
</tr>
<tr>
<th id="T_390d8_level0_row4" class="row_heading level0 row4" >4</th>
<td id="T_390d8_row4_col0" class="data row4 col0" >Burrs Country Park railway station is what stop on the railway line that runs between Heywood and Rawtenstall</td>
<td id="T_390d8_row4_col1" class="data row4 col1" >seventh</td>
<td id="T_390d8_row4_col2" class="data row4 col2" >{'Burrs Country Park railway station', 'East Lancashire Railway'}</td>
<td id="T_390d8_row4_col3" class="data row4 col3" > Burrs Country Park railway station is the seventh stop on the East Lancashire Railway line that runs between Heywood and Rawtenstall.</td>
<td id="T_390d8_row4_col4" class="data row4 col4" > Burrs Country Park railway station is the seventh stop on the East Lancashire Railway line that runs between Heywood and Rawtenstall.</td>
<td id="T_390d8_row4_col5" class="data row4 col5" >1.0</td>
</tr>
</tbody>
</table>


<div style='
text-align: center;
font-size: 16px;
font-weight: bold;
color: #555;
margin: 10px 0;'>
... 145 more rows not displayed ...
</div>

42.0

好的,很棒。我们的 zeroshot_chain 在 devset 中的 150 个问题上获得了大约 42.00% 的准确率。

上表显示了一些示例。例如

  • 问题:谁是为摇滚乐队 Juke Karten 和 Thirty Seconds to Mars 制作专辑的制作人?

  • 推文:Brian Virtue 曾与 Jane's Addiction 和 Velvet Revolver 等乐队合作,他为 Juke Kartel 和 Thirty Seconds to Mars 制作了专辑,展示了... [已截断]

  • 指标:1.0(一条正确、忠实且引人入胜的推文!*)

脚注:*至少根据我们的指标,它只是一个 DSPy 程序,所以如果您愿意,它也可以被优化!这是另一篇笔记本的主题。

优化

现在,让我们优化性能

from dspy.teleprompt import BootstrapFewShotWithRandomSearch
# Set up the optimizer. We'll use very minimal hyperparameters for this example.
# Just do random search with ~3 attempts, and in each attempt, bootstrap <= 3 traces.
optimizer = BootstrapFewShotWithRandomSearch(
metric=metric, max_bootstrapped_demos=3, num_candidate_programs=3
)

# Now use the optimizer to *compile* the chain. This could take 5-10 minutes, unless it's cached.
optimized_chain = optimizer.compile(zeroshot_chain, trainset=trainset, valset=valset)
Going to sample between 1 and 3 traces per predictor.
Will attempt to train 3 candidate sets.
``````output
Average Metric: 22.33333333333334 / 50 (44.7): 100%|█████| 50/50 [00:26<00:00, 1.87it/s]
/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/dspy/evaluate/evaluate.py:126: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
df = df.applymap(truncate_cell)
``````output
Average Metric: 22.33333333333334 / 50 (44.7%)
Score: 44.67 for set: [0]
New best score: 44.67 for seed -3
Scores so far: [44.67]
Best score: 44.67
``````output
Average Metric: 22.33333333333334 / 50 (44.7): 100%|█████| 50/50 [00:00<00:00, 79.51it/s]
/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/dspy/evaluate/evaluate.py:126: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
df = df.applymap(truncate_cell)
``````output
Average Metric: 22.33333333333334 / 50 (44.7%)
Score: 44.67 for set: [16]
Scores so far: [44.67, 44.67]
Best score: 44.67
``````output
4%|██ | 8/200 [00:33<13:21, 4.18s/it]
``````output
Bootstrapped 3 full traces after 9 examples in round 0.
``````output
Average Metric: 24.666666666666668 / 50 (49.3): 100%|████| 50/50 [00:28<00:00, 1.77it/s]
/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/dspy/evaluate/evaluate.py:126: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
df = df.applymap(truncate_cell)
``````output
Average Metric: 24.666666666666668 / 50 (49.3%)
Score: 49.33 for set: [16]
New best score: 49.33 for seed -1
Scores so far: [44.67, 44.67, 49.33]
Best score: 49.33
Average of max per entry across top 1 scores: 0.49333333333333335
Average of max per entry across top 2 scores: 0.5533333333333335
Average of max per entry across top 3 scores: 0.5533333333333335
Average of max per entry across top 5 scores: 0.5533333333333335
Average of max per entry across top 8 scores: 0.5533333333333335
Average of max per entry across top 9999 scores: 0.5533333333333335
``````output
6%|███ | 12/200 [00:31<08:16, 2.64s/it]
``````output
Bootstrapped 2 full traces after 13 examples in round 0.
``````output
Average Metric: 25.66666666666667 / 50 (51.3): 100%|█████| 50/50 [00:25<00:00, 1.92it/s]
/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/dspy/evaluate/evaluate.py:126: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
df = df.applymap(truncate_cell)
``````output
Average Metric: 25.66666666666667 / 50 (51.3%)
Score: 51.33 for set: [16]
New best score: 51.33 for seed 0
Scores so far: [44.67, 44.67, 49.33, 51.33]
Best score: 51.33
Average of max per entry across top 1 scores: 0.5133333333333334
Average of max per entry across top 2 scores: 0.5666666666666668
Average of max per entry across top 3 scores: 0.6000000000000001
Average of max per entry across top 5 scores: 0.6000000000000001
Average of max per entry across top 8 scores: 0.6000000000000001
Average of max per entry across top 9999 scores: 0.6000000000000001
``````output
0%|▎ | 1/200 [00:02<08:37, 2.60s/it]
``````output
Bootstrapped 1 full traces after 2 examples in round 0.
``````output
Average Metric: 26.33333333333334 / 50 (52.7): 100%|█████| 50/50 [00:23<00:00, 2.11it/s]
/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/dspy/evaluate/evaluate.py:126: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
df = df.applymap(truncate_cell)
``````output
Average Metric: 26.33333333333334 / 50 (52.7%)
Score: 52.67 for set: [16]
New best score: 52.67 for seed 1
Scores so far: [44.67, 44.67, 49.33, 51.33, 52.67]
Best score: 52.67
Average of max per entry across top 1 scores: 0.5266666666666667
Average of max per entry across top 2 scores: 0.56
Average of max per entry across top 3 scores: 0.5666666666666668
Average of max per entry across top 5 scores: 0.6000000000000001
Average of max per entry across top 8 scores: 0.6000000000000001
Average of max per entry across top 9999 scores: 0.6000000000000001
``````output
0%|▎ | 1/200 [00:02<07:11, 2.17s/it]
``````output
Bootstrapped 1 full traces after 2 examples in round 0.
``````output
Average Metric: 25.666666666666668 / 50 (51.3): 100%|████| 50/50 [00:21<00:00, 2.29it/s]
``````output
Average Metric: 25.666666666666668 / 50 (51.3%)
Score: 51.33 for set: [16]
Scores so far: [44.67, 44.67, 49.33, 51.33, 52.67, 51.33]
Best score: 52.67
Average of max per entry across top 1 scores: 0.5266666666666667
Average of max per entry across top 2 scores: 0.56
Average of max per entry across top 3 scores: 0.6000000000000001
Average of max per entry across top 5 scores: 0.6133333333333334
Average of max per entry across top 8 scores: 0.6133333333333334
Average of max per entry across top 9999 scores: 0.6133333333333334
6 candidate programs found.
``````output

/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/dspy/evaluate/evaluate.py:126: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
df = df.applymap(truncate_cell)

评估优化的链

好吧,这有多好呢?让我们做一些适当的评估!

evaluate(optimized_chain)
Average Metric: 74.66666666666666 / 150  (49.8): 100%|██| 150/150 [00:54<00:00,  2.74it/s]
``````output
Average Metric: 74.66666666666666 / 150 (49.8%)
``````output

/Users/harrisonchase/.pyenv/versions/3.11.1/envs/langchain-3-11/lib/python3.11/site-packages/dspy/evaluate/evaluate.py:126: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.
df = df.applymap(truncate_cell)
<style type="text/css">
#T_b4366 th {
text-align: left;
}
#T_b4366 td {
text-align: left;
}
#T_b4366_row0_col0, #T_b4366_row0_col1, #T_b4366_row0_col2, #T_b4366_row0_col3, #T_b4366_row0_col4, #T_b4366_row0_col5, #T_b4366_row1_col0, #T_b4366_row1_col1, #T_b4366_row1_col2, #T_b4366_row1_col3, #T_b4366_row1_col4, #T_b4366_row1_col5, #T_b4366_row2_col0, #T_b4366_row2_col1, #T_b4366_row2_col2, #T_b4366_row2_col3, #T_b4366_row2_col4, #T_b4366_row2_col5, #T_b4366_row3_col0, #T_b4366_row3_col1, #T_b4366_row3_col2, #T_b4366_row3_col3, #T_b4366_row3_col4, #T_b4366_row3_col5, #T_b4366_row4_col0, #T_b4366_row4_col1, #T_b4366_row4_col2, #T_b4366_row4_col3, #T_b4366_row4_col4, #T_b4366_row4_col5 {
text-align: left;
white-space: pre-wrap;
word-wrap: break-word;
max-width: 400px;
}
</style>
<table id="T_b4366">
<thead>
<tr>
<th class="blank level0" >&nbsp;</th>
<th id="T_b4366_level0_col0" class="col_heading level0 col0" >question</th>
<th id="T_b4366_level0_col1" class="col_heading level0 col1" >answer</th>
<th id="T_b4366_level0_col2" class="col_heading level0 col2" >gold_titles</th>
<th id="T_b4366_level0_col3" class="col_heading level0 col3" >output</th>
<th id="T_b4366_level0_col4" class="col_heading level0 col4" >tweet_response</th>
<th id="T_b4366_level0_col5" class="col_heading level0 col5" >metric</th>
</tr>
</thead>
<tbody>
<tr>
<th id="T_b4366_level0_row0" class="row_heading level0 row0" >0</th>
<td id="T_b4366_row0_col0" class="data row0 col0" >Who was a producer who produced albums for both rock bands Juke Karten and Thirty Seconds to Mars?</td>
<td id="T_b4366_row0_col1" class="data row0 col1" >Brian Virtue</td>
<td id="T_b4366_row0_col2" class="data row0 col2" >{'Thirty Seconds to Mars', 'Levolution (album)'}</td>
<td id="T_b4366_row0_col3" class="data row0 col3" >Brian Virtue, known for his work with Jane's Addiction and Velvet Revolver, produced albums for both Juke Kartel and Thirty Seconds to Mars. #BrianVirtue #Producer...</td>
<td id="T_b4366_row0_col4" class="data row0 col4" >Brian Virtue, known for his work with Jane's Addiction and Velvet Revolver, produced albums for both Juke Kartel and Thirty Seconds to Mars. #BrianVirtue #Producer...</td>
<td id="T_b4366_row0_col5" class="data row0 col5" >1.0</td>
</tr>
<tr>
<th id="T_b4366_level0_row1" class="row_heading level0 row1" >1</th>
<td id="T_b4366_row1_col0" class="data row1 col0" >Are both the University of Chicago and Syracuse University public universities? </td>
<td id="T_b4366_row1_col1" class="data row1 col1" >no</td>
<td id="T_b4366_row1_col2" class="data row1 col2" >{'Syracuse University', 'University of Chicago'}</td>
<td id="T_b4366_row1_col3" class="data row1 col3" > No, only Northeastern Illinois University is a public state university. Syracuse University is a private research university. #University #PublicPrivate #HigherEd</td>
<td id="T_b4366_row1_col4" class="data row1 col4" > No, only Northeastern Illinois University is a public state university. Syracuse University is a private research university. #University #PublicPrivate #HigherEd</td>
<td id="T_b4366_row1_col5" class="data row1 col5" >0.0</td>
</tr>
<tr>
<th id="T_b4366_level0_row2" class="row_heading level0 row2" >2</th>
<td id="T_b4366_row2_col0" class="data row2 col0" >In what region was Eddy Mazzoleni born?</td>
<td id="T_b4366_row2_col1" class="data row2 col1" >Lombardy, northern Italy</td>
<td id="T_b4366_row2_col2" class="data row2 col2" >{'Eddy Mazzoleni', 'Bergamo'}</td>
<td id="T_b4366_row2_col3" class="data row2 col3" > Eddy Mazzoleni, the Italian professional road cyclist, was born in Bergamo, Italy. #EddyMazzoleni #Cycling #Italy</td>
<td id="T_b4366_row2_col4" class="data row2 col4" > Eddy Mazzoleni, the Italian professional road cyclist, was born in Bergamo, Italy. #EddyMazzoleni #Cycling #Italy</td>
<td id="T_b4366_row2_col5" class="data row2 col5" >0.0</td>
</tr>
<tr>
<th id="T_b4366_level0_row3" class="row_heading level0 row3" >3</th>
<td id="T_b4366_row3_col0" class="data row3 col0" >Who edited the 1990 American romantic comedy film directed by Garry Marshall?</td>
<td id="T_b4366_row3_col1" class="data row3 col1" >Raja Raymond Gosnell</td>
<td id="T_b4366_row3_col2" class="data row3 col2" >{'Raja Gosnell', 'Pretty Woman'}</td>
<td id="T_b4366_row3_col3" class="data row3 col3" > J. F. Lawton wrote the screenplay for Pretty Woman, the 1990 romantic comedy directed by Garry Marshall. #PrettyWoman #GarryMarshall #RomanticComedy</td>
<td id="T_b4366_row3_col4" class="data row3 col4" > J. F. Lawton wrote the screenplay for Pretty Woman, the 1990 romantic comedy directed by Garry Marshall. #PrettyWoman #GarryMarshall #RomanticComedy</td>
<td id="T_b4366_row3_col5" class="data row3 col5" >0.0</td>
</tr>
<tr>
<th id="T_b4366_level0_row4" class="row_heading level0 row4" >4</th>
<td id="T_b4366_row4_col0" class="data row4 col0" >Burrs Country Park railway station is what stop on the railway line that runs between Heywood and Rawtenstall</td>
<td id="T_b4366_row4_col1" class="data row4 col1" >seventh</td>
<td id="T_b4366_row4_col2" class="data row4 col2" >{'Burrs Country Park railway station', 'East Lancashire Railway'}</td>
<td id="T_b4366_row4_col3" class="data row4 col3" > Burrs Country Park railway station is the seventh stop on the East Lancashire Railway, which runs between Heywood and Rawtenstall. #EastLancashireRailway #BurrsCountryPark #RailwayStation</td>
<td id="T_b4366_row4_col4" class="data row4 col4" > Burrs Country Park railway station is the seventh stop on the East Lancashire Railway, which runs between Heywood and Rawtenstall. #EastLancashireRailway #BurrsCountryPark #RailwayStation</td>
<td id="T_b4366_row4_col5" class="data row4 col5" >1.0</td>
</tr>
</tbody>
</table>


<div style='
text-align: center;
font-size: 16px;
font-weight: bold;
color: #555;
margin: 10px 0;'>
... 145 more rows not displayed ...
</div>

49.78

太棒了!我们将链的性能从 42% 提高到接近 50%!

检查优化的链

那么,究竟发生了什么来改进这一点?我们可以通过查看优化的链来了解这一点。我们可以通过两种方式做到这一点

查看使用的提示

我们可以查看实际使用了什么提示。我们可以通过查看 dspy.settings 来做到这一点。

prompt_used, output = dspy.settings.langchain_history[-1]
print(prompt_used)
Essential Instructions: Respond to the provided question based on the given context in the style of a tweet, ensuring the response is concise and within the character limit of a tweet (up to 280 characters).

---

Follow the following format.

Context: ${context}
Question: ${question}
Tweet Response: ${tweet_response}

---

Context:
[1] «Brutus (Funny Car) | Brutus is a pioneering funny car driven by Jim Liberman and prepared by crew chief Lew Arrington in the middle 1960s.»
[2] «USS Brutus (AC-15) | USS "Brutus", formerly the steamer "Peter Jebsen", was a collier in the United States Navy. She was built in 1894 at South Shields-on-Tyne, England, by John Readhead & Sons and was acquired by the U.S. Navy early in 1898 from L. F. Chapman & Company. She was renamed "Brutus" and commissioned at the Mare Island Navy Yard on 27 May 1898, with Lieutenant Vincendon L. Cottman, commanding officer and Lieutenant Randolph H. Miner, executive officer.»
[3] «Brutus Beefcake | Ed Leslie is an American semi-retired professional wrestler, best known for his work in the World Wrestling Federation (WWF) under the ring name Brutus "The Barber" Beefcake. He later worked for World Championship Wrestling (WCW) under a variety of names.»
[4] «Brutus Hamilton | Brutus Kerr Hamilton (July 19, 1900 – December 28, 1970) was an American track and field athlete, coach and athletics administrator.»
[5] «Big Brutus | Big Brutus is the nickname of the Bucyrus-Erie model 1850B electric shovel, which was the second largest of its type in operation in the 1960s and 1970s. Big Brutus is the centerpiece of a mining museum in West Mineral, Kansas where it was used in coal strip mining operations. The shovel was designed to dig from 20 to in relatively shallow coal seams.»
Question: What is the nickname for this United States drag racer who drove Brutus?
Tweet Response: Jim Liberman, also known as "Jungle Jim", drove the pioneering funny car Brutus in the 1960s. #Brutus #FunnyCar #DragRacing

---

Context:
[1] «Philip Markoff | Philip Haynes Markoff (February 12, 1986 – August 15, 2010) was an American medical student who was charged with the armed robbery and murder of Julissa Brisman in a Boston, Massachusetts, hotel on April 14, 2009, and two other armed robberies.»
[2] «Antonia Brenner | Antonia Brenner, better known as Mother Antonia (Spanish: Madre Antonia ), (December 1, 1926 – October 17, 2013) was an American Roman Catholic Religious Sister and activist who chose to reside and care for inmates at the notorious maximum-security La Mesa Prison in Tijuana, Mexico. As a result of her work, she founded a new religious institute called the Eudist Servants of the 11th Hour.»
[3] «Luzira Maximum Security Prison | Luzira Maximum Security Prison is a maximum security prison for both men and women in Uganda. As at July 2016, it is the only maximum security prison in the country and houses Uganda's death row inmates.»
[4] «Pleasant Valley State Prison | Pleasant Valley State Prison (PVSP) is a 640 acres minimum-to-maximum security state prison in Coalinga, Fresno County, California. The facility has housed convicted murderers Sirhan Sirhan, Erik Menendez, X-Raided, and Hans Reiser, among others.»
[5] «Jon-Adrian Velazquez | Jon-Adrian Velazquez is an inmate in the maximum security Sing-Sing prison in New York who is serving a 25-year sentence after being convicted of the 1998 murder of a retired police officer. His case garnered considerable attention from the media ten years after his conviction, due to a visit and support from Martin Sheen and a long-term investigation by Dateline NBC producer Dan Slepian.»
Question: Which maximum security jail housed the killer of Julissa brisman?
Tweet Response:

查看演示

优化的方式是我们在提示中收集了示例(或“演示”)。我们可以检查 optimized_chain 以了解这些示例是什么。

demos = [
eg
for eg in optimized_chain.modules[0].demos
if hasattr(eg, "augmented") and eg.augmented
]
demos
[Example({'augmented': True, 'question': 'What is the nickname for this United States drag racer who drove Brutus?', 'context': ['Brutus (Funny Car) | Brutus is a pioneering funny car driven by Jim Liberman and prepared by crew chief Lew Arrington in the middle 1960s.', 'USS Brutus (AC-15) | USS "Brutus", formerly the steamer "Peter Jebsen", was a collier in the United States Navy. She was built in 1894 at South Shields-on-Tyne, England, by John Readhead & Sons and was acquired by the U.S. Navy early in 1898 from L. F. Chapman & Company. She was renamed "Brutus" and commissioned at the Mare Island Navy Yard on 27 May 1898, with Lieutenant Vincendon L. Cottman, commanding officer and Lieutenant Randolph H. Miner, executive officer.', 'Brutus Beefcake | Ed Leslie is an American semi-retired professional wrestler, best known for his work in the World Wrestling Federation (WWF) under the ring name Brutus "The Barber" Beefcake. He later worked for World Championship Wrestling (WCW) under a variety of names.', 'Brutus Hamilton | Brutus Kerr Hamilton (July 19, 1900 – December 28, 1970) was an American track and field athlete, coach and athletics administrator.', 'Big Brutus | Big Brutus is the nickname of the Bucyrus-Erie model 1850B electric shovel, which was the second largest of its type in operation in the 1960s and 1970s. Big Brutus is the centerpiece of a mining museum in West Mineral, Kansas where it was used in coal strip mining operations. The shovel was designed to dig from 20 to in relatively shallow coal seams.'], 'tweet_response': ' Jim Liberman, also known as "Jungle Jim", drove the pioneering funny car Brutus in the 1960s. #Brutus #FunnyCar #DragRacing'}) (input_keys=None)]

此页面是否有帮助?