Fiddler
Fiddler 是企业级生成式和预测式系统运维的先驱,提供统一的平台,使数据科学、MLOps、风险、合规、分析和其他 LOB 团队能够以企业规模监控、解释、分析和改进 ML 部署。
1. 安装和设置
#!pip install langchain langchain-community langchain-openai fiddler-client
2. Fiddler 连接详情
在您使用 Fiddler 添加有关模型的信息之前
- 您用于连接 Fiddler 的 URL
- 您的组织 ID
- 您的授权令牌
这些信息可以在您的 Fiddler 环境的“设置”页面中找到。
URL = "" # Your Fiddler instance URL, Make sure to include the full URL (including https://). For example: https://demo.fiddler.ai
ORG_NAME = ""
AUTH_TOKEN = "" # Your Fiddler instance auth token
# Fiddler project and model names, used for model registration
PROJECT_NAME = ""
MODEL_NAME = "" # Model name in Fiddler
3. 创建 Fiddler 回调处理程序实例
from langchain_community.callbacks.fiddler_callback import FiddlerCallbackHandler
fiddler_handler = FiddlerCallbackHandler(
url=URL,
org=ORG_NAME,
project=PROJECT_NAME,
model=MODEL_NAME,
api_key=AUTH_TOKEN,
)
API 参考:FiddlerCallbackHandler
示例 1:基本链
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import OpenAI
# Note : Make sure openai API key is set in the environment variable OPENAI_API_KEY
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
output_parser = StrOutputParser()
chain = llm | output_parser
# Invoke the chain. Invocation will be logged to Fiddler, and metrics automatically generated
chain.invoke("How far is moon from earth?")
API 参考:StrOutputParser | OpenAI
# Few more invocations
chain.invoke("What is the temperature on Mars?")
chain.invoke("How much is 2 + 200000?")
chain.invoke("Which movie won the oscars this year?")
chain.invoke("Can you write me a poem about insomnia?")
chain.invoke("How are you doing today?")
chain.invoke("What is the meaning of life?")
示例 2:带有提示模板的链
from langchain_core.prompts import (
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
)
examples = [
{"input": "2+2", "output": "4"},
{"input": "2+3", "output": "5"},
]
example_prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
("ai", "{output}"),
]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples,
)
final_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a wondrous wizard of math."),
few_shot_prompt,
("human", "{input}"),
]
)
# Note : Make sure openai API key is set in the environment variable OPENAI_API_KEY
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
chain = final_prompt | llm
# Invoke the chain. Invocation will be logged to Fiddler, and metrics automatically generated
chain.invoke({"input": "What's the square of a triangle?"})