跳到主要内容
Open In ColabOpen on GitHub

AzureChatOpenAI

本指南将帮助您开始使用 AzureOpenAI 聊天模型。有关所有 AzureChatOpenAI 功能和配置的详细文档,请参阅 API 参考

Azure OpenAI 有多种聊天模型。您可以在 Azure 文档中找到有关其最新模型及其成本、上下文窗口和支持的输入类型的信息。

Azure OpenAI 与 OpenAI 对比

Azure OpenAI 指的是托管在 Microsoft Azure 平台上的 OpenAI 模型。OpenAI 也提供自己的模型 API。要直接访问 OpenAI 服务,请使用 ChatOpenAI 集成

概述

集成详情

类别本地可序列化JS 支持包下载量最新包版本
AzureChatOpenAIlangchain-openai测试版PyPI - DownloadsPyPI - Version

模型特性

工具调用结构化输出JSON 模式图片输入音频输入视频输入逐令牌流式传输原生异步令牌使用量对数概率

设置

要访问 AzureOpenAI 模型,您需要创建一个 Azure 账户,创建一个 Azure OpenAI 模型部署,获取您部署的名称和端点,获取 Azure OpenAI API 密钥,并安装 `langchain-openai` 集成包。

凭证

前往 Azure 文档 创建您的部署并生成 API 密钥。完成此操作后,设置 AZURE_OPENAI_API_KEY 和 AZURE_OPENAI_ENDPOINT 环境变量。

import getpass
import os

if "AZURE_OPENAI_API_KEY" not in os.environ:
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass(
"Enter your AzureOpenAI API key: "
)
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://YOUR-ENDPOINT.openai.azure.com/"

要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

安装

LangChain AzureOpenAI 集成位于 `langchain-openai` 包中。

%pip install -qU langchain-openai

实例化

现在我们可以实例化模型对象并生成聊天补全。

from langchain_openai import AzureChatOpenAI

llm = AzureChatOpenAI(
azure_deployment="gpt-35-turbo", # or your deployment
api_version="2023-06-01-preview", # or your api version
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)
API 参考:AzureChatOpenAI

调用

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 31, 'total_tokens': 39}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-bea4b46c-e3e1-4495-9d3a-698370ad963d-0', usage_metadata={'input_tokens': 31, 'output_tokens': 8, 'total_tokens': 39})
print(ai_msg.content)
J'adore la programmation.

链式调用

我们可以像这样将模型与提示模板链式连接起来

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 26, 'total_tokens': 32}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-cbc44038-09d3-40d4-9da2-c5910ee636ca-0', usage_metadata={'input_tokens': 26, 'output_tokens': 6, 'total_tokens': 32})

指定模型版本

Azure OpenAI 响应包含 `model_name` 响应元数据属性,即用于生成响应的模型名称。然而,与原生 OpenAI 响应不同,它不包含模型的特定版本,该版本在 Azure 的部署中设置。例如,它不区分 `gpt-35-turbo-0125` 和 `gpt-35-turbo-0301`。这使得很难知道用于生成响应的模型版本,这可能导致例如 `OpenAICallbackHandler` 计算总成本错误。

为解决此问题,您可以将 `model_version` 参数传递给 `AzureChatOpenAI` 类,该参数将添加到 LLM 输出中的模型名称中。通过这种方式,您可以轻松区分模型的不同版本。

%pip install -qU langchain-community
from langchain_community.callbacks import get_openai_callback

with get_openai_callback() as cb:
llm.invoke(messages)
print(
f"Total Cost (USD): ${format(cb.total_cost, '.6f')}"
) # without specifying the model version, flat-rate 0.002 USD per 1k input and output tokens is used
API 参考:get_openai_callback
Total Cost (USD): $0.000063
llm_0301 = AzureChatOpenAI(
azure_deployment="gpt-35-turbo", # or your deployment
api_version="2023-06-01-preview", # or your api version
model_version="0301",
)
with get_openai_callback() as cb:
llm_0301.invoke(messages)
print(f"Total Cost (USD): ${format(cb.total_cost, '.6f')}")
Total Cost (USD): $0.000074

API 参考

有关所有 AzureChatOpenAI 功能和配置的详细文档,请参阅 API 参考:https://python.langchain.ac.cn/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html