跳到主要内容
Open In ColabOpen on GitHub

ChatCloudflareWorkersAI

这将帮助您开始使用 CloudflareWorkersAI 聊天模型。有关所有 ChatCloudflareWorkersAI 功能和配置的详细文档,请查阅API 参考

概述

集成详情

类别本地可序列化JS 支持包下载量最新包版本
ChatCloudflareWorkersAIlangchain-cloudflarePyPI - DownloadsPyPI - Version

模型特性

工具调用结构化输出JSON 模式图片输入音频输入视频输入逐令牌流式传输原生异步令牌使用量对数概率

设置

要访问 CloudflareWorkersAI 模型,您需要创建一个 CloudflareWorkersAI 账户,获取 API 密钥,并安装 `langchain-cloudflare` 集成包。

凭证

前往 https://www.cloudflare.com/developer-platform/products/workers-ai/ 注册 CloudflareWorkersAI 并生成 API 密钥。完成后,设置 CF_AI_API_KEY 环境变量和 CF_ACCOUNT_ID 环境变量

import getpass
import os

if not os.getenv("CF_AI_API_KEY"):
os.environ["CF_AI_API_KEY"] = getpass.getpass(
"Enter your CloudflareWorkersAI API key: "
)

if not os.getenv("CF_ACCOUNT_ID"):
os.environ["CF_ACCOUNT_ID"] = getpass.getpass(
"Enter your CloudflareWorkersAI account ID: "
)

如果您希望对模型调用进行自动化追踪,也可以通过取消注释下方内容来设置您的 LangSmith API 密钥。

# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

安装

LangChain CloudflareWorkersAI 集成位于 `langchain-cloudflare` 包中

%pip install -qU langchain-cloudflare

实例化

现在我们可以实例化模型对象并生成聊天补全

  • 使用相关参数更新模型实例化。
from langchain_cloudflare.chat_models import ChatCloudflareWorkersAI

llm = ChatCloudflareWorkersAI(
model="@cf/meta/llama-3.3-70b-instruct-fp8-fast",
temperature=0,
max_tokens=1024,
# other params...
)

调用

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", additional_kwargs={}, response_metadata={'token_usage': {'prompt_tokens': 37, 'completion_tokens': 9, 'total_tokens': 46}, 'model_name': '@cf/meta/llama-3.3-70b-instruct-fp8-fast'}, id='run-995d1970-b6be-49f3-99ae-af4cdba02304-0', usage_metadata={'input_tokens': 37, 'output_tokens': 9, 'total_tokens': 46})
print(ai_msg.content)
J'adore la programmation.

链式调用

我们可以像这样将模型与提示模板链式连接起来

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='Ich liebe das Programmieren.', additional_kwargs={}, response_metadata={'token_usage': {'prompt_tokens': 32, 'completion_tokens': 7, 'total_tokens': 39}, 'model_name': '@cf/meta/llama-3.3-70b-instruct-fp8-fast'}, id='run-d1b677bc-194e-4473-90f1-aa65e8e46d50-0', usage_metadata={'input_tokens': 32, 'output_tokens': 7, 'total_tokens': 39})

结构化输出

json_schema = {
"title": "joke",
"description": "Joke to tell user.",
"type": "object",
"properties": {
"setup": {
"type": "string",
"description": "The setup of the joke",
},
"punchline": {
"type": "string",
"description": "The punchline to the joke",
},
"rating": {
"type": "integer",
"description": "How funny the joke is, from 1 to 10",
"default": None,
},
},
"required": ["setup", "punchline"],
}
structured_llm = llm.with_structured_output(json_schema)

structured_llm.invoke("Tell me a joke about cats")
{'setup': 'Why did the cat join a band?',
'punchline': 'Because it wanted to be the purr-cussionist',
'rating': '8'}

绑定工具

from typing import List

from langchain_core.tools import tool


@tool
def validate_user(user_id: int, addresses: List[str]) -> bool:
"""Validate user using historical addresses.

Args:
user_id (int): the user ID.
addresses (List[str]): Previous addresses as a list of strings.
"""
return True


llm_with_tools = llm.bind_tools([validate_user])

result = llm_with_tools.invoke(
"Could you validate user 123? They previously lived at "
"123 Fake St in Boston MA and 234 Pretend Boulevard in "
"Houston TX."
)
result.tool_calls
API 参考:tool
[{'name': 'validate_user',
'args': {'user_id': '123',
'addresses': '["123 Fake St in Boston MA", "234 Pretend Boulevard in Houston TX"]'},
'id': '31ec7d6a-9ce5-471b-be64-8ea0492d1387',
'type': 'tool_call'}]

API 参考

https://developers.cloudflare.com/workers-ai/ https://developers.cloudflare.com/agents/