ChatGoodfire
这将帮助您开始使用 Goodfire 聊天模型。有关所有 ChatGoodfire 功能和配置的详细文档,请访问 PyPI 项目页面,或直接访问 Goodfire SDK 文档。所有 Goodfire 特有的功能(例如 SAE 功能、变体等)都可通过主 goodfire
包获得。此集成是 Goodfire SDK 的包装器。
概述
集成详情
类 | 包 | 本地 | 可序列化 | JS 支持 | 包下载量 | 包最新版本 |
---|---|---|---|---|---|---|
ChatGoodfire | langchain-goodfire | ❌ | ❌ | ❌ |
模型功能
工具调用 | 结构化输出 | JSON 模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式传输 | 原生异步 | 令牌使用量 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ |
设置
要访问 Goodfire 模型,您需要创建一个 Goodfire 帐户,获取 API 密钥,并安装 langchain-goodfire
集成包。
凭据
前往 Goodfire 设置 注册 Goodfire 并生成 API 密钥。完成后,设置 GOODFIRE_API_KEY 环境变量。
import getpass
import os
if not os.getenv("GOODFIRE_API_KEY"):
os.environ["GOODFIRE_API_KEY"] = getpass.getpass("Enter your Goodfire API key: ")
如果您想获得模型调用的自动追踪,您还可以通过取消注释下方内容来设置您的 LangSmith API 密钥
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
安装
LangChain Goodfire 集成位于 langchain-goodfire
包中
%pip install -qU langchain-goodfire
Note: you may need to restart the kernel to use updated packages.
实例化
现在我们可以实例化我们的模型对象并生成聊天完成
import goodfire
from langchain_goodfire import ChatGoodfire
base_variant = goodfire.Variant("meta-llama/Llama-3.3-70B-Instruct")
llm = ChatGoodfire(
model=base_variant,
temperature=0,
max_completion_tokens=1000,
seed=42,
)
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
调用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = await llm.ainvoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", additional_kwargs={}, response_metadata={}, id='run-8d43cf35-bce8-4827-8935-c64f8fb78cd0-0', usage_metadata={'input_tokens': 51, 'output_tokens': 39, 'total_tokens': 90})
print(ai_msg.content)
J'adore la programmation.
链接
我们可以像这样使用提示模板链接我们的模型
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
await chain.ainvoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='Ich liebe das Programmieren. How can I help you with programming today?', additional_kwargs={}, response_metadata={}, id='run-03d1a585-8234-46f1-a8df-bf9143fe3309-0', usage_metadata={'input_tokens': 46, 'output_tokens': 46, 'total_tokens': 92})
Goodfire 特有功能
要使用 Goodfire 特有的功能(例如 SAE 功能和变体),您可以直接使用 goodfire
包。
client = goodfire.Client(api_key=os.environ["GOODFIRE_API_KEY"])
pirate_features = client.features.search(
"assistant should roleplay as a pirate", base_variant
)
pirate_features
FeatureGroup([
0: "The assistant should adopt the persona of a pirate",
1: "The assistant should roleplay as a pirate",
2: "The assistant should engage with pirate-themed content or roleplay as a pirate",
3: "The assistant should roleplay as a character",
4: "The assistant should roleplay as a specific character",
5: "The assistant should roleplay as a game character or NPC",
6: "The assistant should roleplay as a human character",
7: "Requests for the assistant to roleplay or pretend to be something else",
8: "Requests for the assistant to roleplay or pretend to be something",
9: "The assistant is being assigned a role or persona to roleplay"
])
pirate_variant = goodfire.Variant("meta-llama/Llama-3.3-70B-Instruct")
pirate_variant.set(pirate_features[0], 0.4)
pirate_variant.set(pirate_features[1], 0.3)
await llm.ainvoke("Tell me a joke", model=pirate_variant)
AIMessage(content='Why did the scarecrow win an award? Because he was outstanding in his field! Arrr! Hope that made ye laugh, matey!', additional_kwargs={}, response_metadata={}, id='run-7d8bd30f-7f80-41cb-bdb6-25c29c22a7ce-0', usage_metadata={'input_tokens': 35, 'output_tokens': 60, 'total_tokens': 95})
API 参考
有关所有 ChatGoodfire 功能和配置的详细文档,请访问 API 参考