Llama.cpp
llama.cpp python 库是
@ggerganov
llama.cpp 的简单 Python 绑定。此软件包提供
- 通过 ctypes 接口低级访问 C API。
- 用于文本完成的高级 Python API
- 类似
OpenAI
的 APILangChain
兼容性LlamaIndex
兼容性- OpenAI 兼容的 Web 服务器
- 本地 Copilot 替代品
- 函数调用支持
- 视觉 API 支持
- 多模型
概述
集成细节
类 | 包 | 本地 | 可序列化 | JS 支持 |
---|---|---|---|---|
ChatLlamaCpp | langchain-community | ✅ | ❌ | ❌ |
模型功能
工具调用 | 结构化输出 | JSON 模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式传输 | 原生异步 | 令牌使用 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ |
设置
要开始并使用下面显示的所有功能,我们建议使用为工具调用微调的模型。
我们将使用 NousResearch 的 Hermes-2-Pro-Llama-3-8B-GGUF。
Hermes 2 Pro 是 Nous Hermes 2 的升级版本,包含 OpenHermes 2.5 数据集的更新和清理版本,以及内部开发的全新函数调用和 JSON 模式数据集。这个新版本的 Hermes 保持了其出色的通用任务和对话能力,并且擅长函数调用
请参阅我们关于本地模型的指南以深入了解
安装
LangChain LlamaCpp 集成存在于 langchain-community
和 llama-cpp-python
包中
%pip install -qU langchain-community llama-cpp-python
实例化
现在我们可以实例化我们的模型对象并生成聊天补全
# Path to your model weights
local_model = "local/path/to/Hermes-2-Pro-Llama-3-8B-Q8_0.gguf"
import multiprocessing
from langchain_community.chat_models import ChatLlamaCpp
llm = ChatLlamaCpp(
temperature=0.5,
model_path=local_model,
n_ctx=10000,
n_gpu_layers=8,
n_batch=300, # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
max_tokens=512,
n_threads=multiprocessing.cpu_count() - 1,
repeat_penalty=1.5,
top_p=0.5,
verbose=True,
)
调用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
print(ai_msg.content)
J'aime programmer. (In France, "programming" is often used in its original sense of scheduling or organizing events.)
If you meant computer-programming:
Je suis amoureux de la programmation informatique.
(You might also say simply 'programmation', which would be understood as both meanings - depending on context).
链接
我们可以像这样将我们的模型与提示模板链接起来
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
工具调用
首先,它的工作方式与 OpenAI 函数调用基本相同
OpenAI 有一个 工具调用(我们在此处交替使用“工具调用”和“函数调用”)API,允许您描述工具及其参数,并让模型返回一个 JSON 对象,其中包含要调用的工具以及该工具的输入。工具调用对于构建使用工具的链和代理,以及更普遍地从模型获取结构化输出非常有用。
使用 ChatLlamaCpp.bind_tools
,我们可以轻松地将 Pydantic 类、字典模式、LangChain 工具,甚至函数作为工具传递给模型。在后台,这些会被转换为 OpenAI 工具模式,如下所示
{
"name": "...",
"description": "...",
"parameters": {...} # JSONSchema
}
并在每次模型调用中传递。
但是,它不能自动触发函数/工具,我们需要通过指定“工具选择”参数来强制执行。此参数的格式通常如下所述。
{"type": "function", "function": {"name": <<tool_name>>}}。
from langchain_core.tools import tool
from pydantic import BaseModel, Field
class WeatherInput(BaseModel):
location: str = Field(description="The city and state, e.g. San Francisco, CA")
unit: str = Field(enum=["celsius", "fahrenheit"])
@tool("get_current_weather", args_schema=WeatherInput)
def get_weather(location: str, unit: str):
"""Get the current weather in a given location"""
return f"Now the weather in {location} is 22 {unit}"
llm_with_tools = llm.bind_tools(
tools=[get_weather],
tool_choice={"type": "function", "function": {"name": "get_current_weather"}},
)
ai_msg = llm_with_tools.invoke(
"what is the weather like in HCMC in celsius",
)
ai_msg.tool_calls
[{'name': 'get_current_weather',
'args': {'location': 'Ho Chi Minh City', 'unit': 'celsius'},
'id': 'call__0_get_current_weather_cmpl-394d9943-0a1f-425b-8139-d2826c1431f2'}]
class MagicFunctionInput(BaseModel):
magic_function_input: int = Field(description="The input value for magic function")
@tool("get_magic_function", args_schema=MagicFunctionInput)
def magic_function(magic_function_input: int):
"""Get the value of magic function for an input."""
return magic_function_input + 2
llm_with_tools = llm.bind_tools(
tools=[magic_function],
tool_choice={"type": "function", "function": {"name": "get_magic_function"}},
)
ai_msg = llm_with_tools.invoke(
"What is magic function of 3?",
)
ai_msg
ai_msg.tool_calls
[{'name': 'get_magic_function',
'args': {'magic_function_input': 3},
'id': 'call__0_get_magic_function_cmpl-cd83a994-b820-4428-957c-48076c68335a'}]
结构化输出
from langchain_core.utils.function_calling import convert_to_openai_tool
from pydantic import BaseModel
class Joke(BaseModel):
"""A setup to a joke and the punchline."""
setup: str
punchline: str
dict_schema = convert_to_openai_tool(Joke)
structured_llm = llm.with_structured_output(dict_schema)
result = structured_llm.invoke("Tell me a joke about birds")
result
result
{'setup': '- Why did the chicken cross the playground?',
'punchline': '\n\n- To get to its gilded cage on the other side!'}
流式传输
for chunk in llm.stream("what is 25x5"):
print(chunk.content, end="\n", flush=True)
API 参考
有关所有 ChatLlamaCpp 功能和配置的详细文档,请访问 API 参考:https://python.langchain.ac.cn/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html