跳到主要内容
Open In ColabOpen on GitHub

ChatNetmind

这将帮助您开始使用 Netmind 聊天模型。有关所有 ChatNetmind 功能和配置的详细文档,请参阅 API 参考

概述

集成详情

类别本地可序列化JS 支持包下载量最新包版本
ChatNetmindlangchain-netmindPyPI - DownloadsPyPI - Version

模型特性

工具调用结构化输出JSON 模式图片输入音频输入视频输入逐令牌流式传输原生异步令牌使用量对数概率

设置

要访问 Netmind 模型,您需要创建 Netmind 账户,获取 API 密钥,并安装 langchain-netmind 集成包。

凭证

前往 https://www.netmind.ai/ 注册 Netmind 并生成 API 密钥。完成后,设置 NETMIND_API_KEY 环境变量。

import getpass
import os

if not os.getenv("NETMIND_API_KEY"):
os.environ["NETMIND_API_KEY"] = getpass.getpass("Enter your Netmind API key: ")

如果您希望对模型调用进行自动化追踪,也可以通过取消注释下方内容来设置您的 LangSmith API 密钥。

# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

安装

LangChain Netmind 集成位于 langchain-netmind 包中。

%pip install -qU langchain-netmind

[notice] A new release of pip is available: 24.0 -> 25.0.1
[notice] To update, run: pip install --upgrade pip
Note: you may need to restart the kernel to use updated packages.

实例化

现在我们可以实例化模型对象并生成聊天补全

from langchain_netmind import ChatNetmind

llm = ChatNetmind(
model="deepseek-ai/DeepSeek-V3",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)

调用

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore programmer.", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 13, 'prompt_tokens': 31, 'total_tokens': 44, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'deepseek-ai/DeepSeek-V3', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-ca6c2010-844d-4bf6-baac-6e248491b000-0', usage_metadata={'input_tokens': 31, 'output_tokens': 13, 'total_tokens': 44, 'input_token_details': {}, 'output_token_details': {}})
print(ai_msg.content)
J'adore programmer.

链式调用

我们可以像这样将模型与提示模板链式连接起来

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='Ich liebe es zu programmieren.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 14, 'prompt_tokens': 26, 'total_tokens': 40, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'deepseek-ai/DeepSeek-V3', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-d63adcc6-53ba-4caa-9a79-78d640b39274-0', usage_metadata={'input_tokens': 26, 'output_tokens': 14, 'total_tokens': 40, 'input_token_details': {}, 'output_token_details': {}})

API 参考

有关所有 ChatNetmind 功能和配置的详细文档,请参阅 API 参考。