ChatOCIModelDeployment
这将帮助您开始使用 OCIModelDeployment 聊天模型。有关所有 ChatOCIModelDeployment 功能和配置的详细文档,请访问 API 参考。
OCI 数据科学 是一个完全托管的无服务器平台,供数据科学团队在 Oracle 云基础设施中构建、训练和管理机器学习模型。您可以使用 AI 快速操作 在 OCI 数据科学模型部署服务 上轻松部署 LLM。您可以选择使用流行的推理框架(如 vLLM 或 TGI)部署模型。默认情况下,模型部署端点模拟 OpenAI API 协议。
有关最新的更新、示例和实验性功能,请参阅 ADS LangChain 集成。
概述
集成细节
类 | 包 | 本地 | 可序列化 | JS 支持 | 包下载 | 包最新版 |
---|---|---|---|---|---|---|
ChatOCIModelDeployment | langchain-community | ❌ | 测试版 | ❌ |
模型功能
工具调用 | 结构化输出 | JSON 模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式传输 | 原生异步 | 令牌使用 | Logprobs |
---|---|---|---|---|---|---|---|---|---|
依赖 | 依赖 | 依赖 | 依赖 | 依赖 | 依赖 | ✅ | ✅ | ✅ | ✅ |
一些模型功能,包括工具调用、结构化输出、JSON 模式和多模态输入,取决于部署的模型。
设置
要使用 ChatOCIModelDeployment,您需要部署一个具有聊天完成端点的聊天模型,并安装 langchain-community
、langchain-openai
和 oracle-ads
集成包。
您可以使用 OCI 数据科学模型部署上的 AI 快速操作轻松部署基础模型。有关其他部署示例,请访问 Oracle GitHub 示例存储库。
策略
请确保您拥有访问 OCI 数据科学模型部署端点所需的 策略。
凭据
您可以通过 Oracle ADS 设置身份验证。当您在 OCI 数据科学笔记本会话中工作时,您可以利用资源主体访问其他 OCI 资源。
import ads
# Set authentication through ads
# Use resource principal are operating within a
# OCI service that has resource principal based
# authentication configured
ads.set_auth("resource_principal")
或者,您可以使用以下环境变量配置凭据。例如,使用具有特定配置文件的 API 密钥
import os
# Set authentication through environment variables
# Use API Key setup when you are working from a local
# workstation or on platform which does not support
# resource principals.
os.environ["OCI_IAM_TYPE"] = "api_key"
os.environ["OCI_CONFIG_PROFILE"] = "default"
os.environ["OCI_CONFIG_LOCATION"] = "~/.oci"
查看 Oracle ADS 文档以了解更多选项。
安装
LangChain OCIModelDeployment 集成位于 langchain-community
包中。以下命令将安装 langchain-community
和所需的依赖项。
%pip install -qU langchain-community langchain-openai oracle-ads
实例化
您可以使用通用的 ChatOCIModelDeployment
或框架特定的类(如 ChatOCIModelDeploymentVLLM
)实例化模型。
- 当您需要部署模型的通用入口点时,请使用
ChatOCIModelDeployment
。您可以在实例化此类时通过model_kwargs
传递模型参数。这允许灵活性和易于配置,而无需依赖于框架特定的细节。
from langchain_community.chat_models import ChatOCIModelDeployment
# Create an instance of OCI Model Deployment Endpoint
# Replace the endpoint uri with your own
# Using generic class as entry point, you will be able
# to pass model parameters through model_kwargs during
# instantiation.
chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<ocid>/predict",
streaming=True,
max_retries=1,
model_kwargs={
"temperature": 0.2,
"max_tokens": 512,
}, # other model params...
)
- 使用框架特定的类(如
ChatOCIModelDeploymentVLLM
):当您使用特定的框架(例如vLLM
)并且需要直接通过构造函数传递模型参数时,这非常适用,从而简化了设置过程。
from langchain_community.chat_models import ChatOCIModelDeploymentVLLM
# Create an instance of OCI Model Deployment Endpoint
# Replace the endpoint uri with your own
# Using framework specific class as entry point, you will
# be able to pass model parameters in constructor.
chat = ChatOCIModelDeploymentVLLM(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict",
)
调用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = chat.invoke(messages)
ai_msg
AIMessage(content="J'adore programmer.", response_metadata={'token_usage': {'prompt_tokens': 44, 'total_tokens': 52, 'completion_tokens': 8}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-ca145168-efa9-414c-9dd1-21d10766fdd3-0')
print(ai_msg.content)
J'adore programmer.
链式调用
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | chat
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
AIMessage(content='Ich liebe Programmierung.', response_metadata={'token_usage': {'prompt_tokens': 38, 'total_tokens': 48, 'completion_tokens': 10}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-5dd936b0-b97e-490e-9869-2ad3dd524234-0')
异步调用
from langchain_community.chat_models import ChatOCIModelDeployment
system = "You are a helpful translator that translates {input_language} to {output_language}."
human = "{text}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict"
)
chain = prompt | chat
await chain.ainvoke(
{
"input_language": "English",
"output_language": "Chinese",
"text": "I love programming",
}
)
AIMessage(content='我喜欢编程', response_metadata={'token_usage': {'prompt_tokens': 37, 'total_tokens': 50, 'completion_tokens': 13}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-a2dc9393-f269-41a4-b908-b1d8a92cf827-0')
流式调用
import os
import sys
from langchain_community.chat_models import ChatOCIModelDeployment
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[("human", "List out the 5 states in the United State.")]
)
chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict"
)
chain = prompt | chat
for chunk in chain.stream({}):
sys.stdout.write(chunk.content)
sys.stdout.flush()
1. California
2. Texas
3. Florida
4. New York
5. Illinois
结构化输出
from langchain_community.chat_models import ChatOCIModelDeployment
from pydantic import BaseModel
class Joke(BaseModel):
"""A setup to a joke and the punchline."""
setup: str
punchline: str
chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict",
)
structured_llm = chat.with_structured_output(Joke, method="json_mode")
output = structured_llm.invoke(
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
)
output.dict()
{'setup': 'Why did the cat get stuck in the tree?',
'punchline': 'Because it was chasing its tail!'}
API 参考
有关所有特性和配置的详细信息,请参阅每个类的 API 参考文档。