跳到主要内容

ChatOutlines

这将帮助您开始使用 Outlines 聊天模型。有关所有 ChatOutlines 功能和配置的详细文档,请访问 API 参考

Outlines 是一个用于约束语言生成的库。它允许您使用各种后端的大型语言模型 (LLM),同时对生成的输出应用约束。

概述

集成详情

本地可序列化JS 支持包下载包最新版本
ChatOutlineslangchain-communityPyPI - DownloadsPyPI - Version

模型特性

工具调用结构化输出JSON 模式图像输入音频输入视频输入令牌级流式传输原生异步令牌使用量Logprobs

设置

要访问 Outlines 模型,您需要连接互联网才能从 huggingface 下载模型权重。根据后端,您需要安装所需的依赖项(请参阅 Outlines 文档

凭据

Outlines 没有内置的身份验证机制。

安装

LangChain Outlines 集成存在于 langchain-community 包中,并且需要 outlines

%pip install -qU langchain-community outlines

实例化

现在我们可以实例化我们的模型对象并生成聊天补全

from langchain_community.chat_models.outlines import ChatOutlines

# For llamacpp backend
model = ChatOutlines(model="TheBloke/phi-2-GGUF/phi-2.Q4_K_M.gguf", backend="llamacpp")

# For vllm backend (not available on Mac)
model = ChatOutlines(model="meta-llama/Llama-3.2-1B", backend="vllm")

# For mlxlm backend (only available on Mac)
model = ChatOutlines(model="mistralai/Ministral-8B-Instruct-2410", backend="mlxlm")

# For huggingface transformers backend
model = ChatOutlines(model="microsoft/phi-2") # defaults to transformers backend
API 参考:ChatOutlines

调用

from langchain_core.messages import HumanMessage

messages = [HumanMessage(content="What will the capital of mars be called?")]
response = model.invoke(messages)

response.content
API 参考:HumanMessage

流式传输

ChatOutlines 支持令牌的流式传输

messages = [HumanMessage(content="Count to 10 in French:")]

for chunk in model.stream(messages):
print(chunk.content, end="", flush=True)

链接

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | model
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)

约束生成

ChatOutlines 允许您对生成的输出应用各种约束

正则表达式约束

model.regex = r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)"

response = model.invoke("What is the IP address of Google's DNS server?")

response.content

类型约束

model.type_constraints = int
response = model.invoke("What is the answer to life, the universe, and everything?")

response.content

Pydantic 和 JSON 模式

from pydantic import BaseModel


class Person(BaseModel):
name: str


model.json_schema = Person
response = model.invoke("Who are the main contributors to LangChain?")
person = Person.model_validate_json(response.content)

person

上下文无关文法

model.grammar = """
?start: expression
?expression: term (("+" | "-") term)*
?term: factor (("*" | "/") factor)*
?factor: NUMBER | "-" factor | "(" expression ")"
%import common.NUMBER
%import common.WS
%ignore WS
"""
response = model.invoke("Give me a complex arithmetic expression:")

response.content

LangChain 的结构化输出

您还可以将 LangChain 的结构化输出与 ChatOutlines 一起使用

from pydantic import BaseModel


class AnswerWithJustification(BaseModel):
answer: str
justification: str


_model = model.with_structured_output(AnswerWithJustification)
result = _model.invoke("What weighs more, a pound of bricks or a pound of feathers?")

result

API 参考

有关所有 ChatOutlines 功能和配置的详细文档,请访问 API 参考: https://python.langchain.ac.cn/api_reference/community/chat_models/langchain_community.chat_models.outlines.ChatOutlines.html

完整的 Outlines 文档:

https://dottxt-ai.github.io/outlines/latest/


此页是否对您有帮助?