跳到主要内容
Open In ColabOpen on GitHub

ChatSeekrFlow

Seekr 提供 AI 驱动的解决方案,用于结构化、可解释和透明的 AI 交互。

本笔记本提供了 Seekr 聊天模型 的快速入门概述。有关所有 ChatSeekrFlow 功能和配置的详细文档,请查阅API 参考

概述

ChatSeekrFlow 类封装了托管在 SeekrFlow 上的聊天模型端点,从而实现了与 LangChain 应用程序的无缝集成。

集成详情

类别本地可序列化包下载量最新包版本
ChatSeekrFlowseekrai测试版PyPI - DownloadsPyPI - Version

模型功能

工具调用结构化输出JSON 模式图片输入音频输入视频输入逐令牌流式传输原生异步令牌使用量对数概率

支持的方法

ChatSeekrFlow 支持 ChatModel 的所有方法,**异步 API 除外**。

端点要求

ChatSeekrFlow 封装的服务端点**必须**具有与 OpenAI 兼容的聊天输入/输出格式。它可用于

  1. 微调的 Seekr 模型
  2. 自定义 SeekrFlow 模型
  3. 使用 Seekr 检索系统的 RAG 启用模型

对于异步使用,请参考 AsyncChatSeekrFlow(即将推出)。

LangChain 中 ChatSeekrFlow 入门

本笔记本介绍了如何在 LangChain 中使用 SeekrFlow 作为聊天模型。

设置

确保您已安装必要的依赖项

pip install seekrai langchain langchain-community

您还必须拥有 Seekr 的 API 密钥才能验证请求。

# Standard library
import getpass
import os

# Third-party
from langchain.prompts import ChatPromptTemplate
from langchain.schema import HumanMessage
from langchain_core.runnables import RunnableSequence

# OSS SeekrFlow integration
from langchain_seekrflow import ChatSeekrFlow
from seekrai import SeekrFlow

API 密钥设置

您需要将 API 密钥设置为环境变量以验证请求。

运行以下单元格。

或在运行查询前手动分配

SEEKR_API_KEY = "your-api-key-here"
os.environ["SEEKR_API_KEY"] = getpass.getpass("Enter your Seekr API key:")

实例化

os.environ["SEEKR_API_KEY"]
seekr_client = SeekrFlow(api_key=SEEKR_API_KEY)

llm = ChatSeekrFlow(
client=seekr_client, model_name="meta-llama/Meta-Llama-3-8B-Instruct"
)

调用

response = llm.invoke([HumanMessage(content="Hello, Seekr!")])
print(response.content)
Hello there! I'm Seekr, nice to meet you! What brings you here today? Do you have a question, or are you looking for some help with something? I'm all ears (or rather, all text)!

链式调用

prompt = ChatPromptTemplate.from_template("Translate to French: {text}")

chain: RunnableSequence = prompt | llm
result = chain.invoke({"text": "Good morning"})
print(result)
content='The translation of "Good morning" in French is:\n\n"Bonne journée"' additional_kwargs={} response_metadata={}
def test_stream():
"""Test synchronous invocation in streaming mode."""
print("\n🔹 Testing Sync `stream()` (Streaming)...")

for chunk in llm.stream([HumanMessage(content="Write me a haiku.")]):
print(chunk.content, end="", flush=True)


# ✅ Ensure streaming is enabled
llm = ChatSeekrFlow(
client=seekr_client,
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
streaming=True, # ✅ Enable streaming
)

# ✅ Run sync streaming test
test_stream()

🔹 Testing Sync `stream()` (Streaming)...
Here is a haiku:

Golden sunset fades
Ripples on the quiet lake
Peaceful evening sky

错误处理与调试

# Define a minimal mock SeekrFlow client
class MockSeekrClient:
"""Mock SeekrFlow API client that mimics the real API structure."""

class MockChat:
"""Mock Chat object with a completions method."""

class MockCompletions:
"""Mock Completions object with a create method."""

def create(self, *args, **kwargs):
return {
"choices": [{"message": {"content": "Mock response"}}]
} # Mimic API response

completions = MockCompletions()

chat = MockChat()


def test_initialization_errors():
"""Test that invalid ChatSeekrFlow initializations raise expected errors."""

test_cases = [
{
"name": "Missing Client",
"args": {"client": None, "model_name": "seekrflow-model"},
"expected_error": "SeekrFlow client cannot be None.",
},
{
"name": "Missing Model Name",
"args": {"client": MockSeekrClient(), "model_name": ""},
"expected_error": "A valid model name must be provided.",
},
]

for test in test_cases:
try:
print(f"Running test: {test['name']}")
faulty_llm = ChatSeekrFlow(**test["args"])

# If no error is raised, fail the test
print(f"❌ Test '{test['name']}' failed: No error was raised!")
except Exception as e:
error_msg = str(e)
assert test["expected_error"] in error_msg, f"Unexpected error: {error_msg}"
print(f"✅ Expected Error: {error_msg}")


# Run test
test_initialization_errors()
Running test: Missing Client
✅ Expected Error: SeekrFlow client cannot be None.
Running test: Missing Model Name
✅ Expected Error: A valid model name must be provided.

API 参考