PyMuPDF
PyMuPDF
针对速度进行了优化,并包含有关 PDF 及其页面的详细元数据。它为每页返回一个文档。
概述
集成详情
类 | 包 | 本地 | 可序列化 | JS 支持 |
---|---|---|---|---|
PyMuPDFLoader | langchain_community | ✅ | ❌ | ❌ |
加载器特性
来源 | 文档延迟加载 | 原生异步支持 |
---|---|---|
PyMuPDFLoader | ✅ | ❌ |
设置
凭据
使用 PyMuPDFLoader
不需要凭据。
如果您想获得模型调用的自动化一流跟踪,您还可以通过取消注释下面的内容来设置您的 LangSmith API 密钥
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
安装
安装 langchain_community 和 pymupdf。
%pip install -qU langchain-community pymupdf
初始化
现在我们可以初始化加载器并开始加载文档。
from langchain_community.document_loaders import PyMuPDFLoader
loader = PyMuPDFLoader("./example_data/layout-parser-paper.pdf")
API 参考:PyMuPDFLoader
加载
您可以在 load
调用中传递 PyMuPDF 文档中的任何选项作为关键字参数,它将被传递到 get_text()
调用中。
docs = loader.load()
docs[0]
Document(metadata={'source': './example_data/layout-parser-paper.pdf', 'file_path': './example_data/layout-parser-paper.pdf', 'page': 0, 'total_pages': 16, 'format': 'PDF 1.5', 'title': '', 'author': '', 'subject': '', 'keywords': '', 'creator': 'LaTeX with hyperref', 'producer': 'pdfTeX-1.40.21', 'creationDate': 'D:20210622012710Z', 'modDate': 'D:20210622012710Z', 'trapped': ''}, page_content='LayoutParser: A Unified Toolkit for Deep\nLearning Based Document Image Analysis\nZejiang Shen1 (\x00), Ruochen Zhang2, Melissa Dell3, Benjamin Charles Germain\nLee4, Jacob Carlson3, and Weining Li5\n1 Allen Institute for AI\[email protected]\n2 Brown University\nruochen [email protected]\n3 Harvard University\n{melissadell,jacob carlson}@fas.harvard.edu\n4 University of Washington\[email protected]\n5 University of Waterloo\[email protected]\nAbstract. Recent advances in document image analysis (DIA) have been\nprimarily driven by the application of neural networks. Ideally, research\noutcomes could be easily deployed in production and extended for further\ninvestigation. However, various factors like loosely organized codebases\nand sophisticated model configurations complicate the easy reuse of im-\nportant innovations by a wide audience. Though there have been on-going\nefforts to improve reusability and simplify deep learning (DL) model\ndevelopment in disciplines like natural language processing and computer\nvision, none of them are optimized for challenges in the domain of DIA.\nThis represents a major gap in the existing toolkit, as DIA is central to\nacademic research across a wide range of disciplines in the social sciences\nand humanities. This paper introduces LayoutParser, an open-source\nlibrary for streamlining the usage of DL in DIA research and applica-\ntions. The core LayoutParser library comes with a set of simple and\nintuitive interfaces for applying and customizing DL models for layout de-\ntection, character recognition, and many other document processing tasks.\nTo promote extensibility, LayoutParser also incorporates a community\nplatform for sharing both pre-trained models and full document digiti-\nzation pipelines. We demonstrate that LayoutParser is helpful for both\nlightweight and large-scale digitization pipelines in real-word use cases.\nThe library is publicly available at https://layout-parser.github.io.\nKeywords: Document Image Analysis · Deep Learning · Layout Analysis\n· Character Recognition · Open Source library · Toolkit.\n1\nIntroduction\nDeep Learning(DL)-based approaches are the state-of-the-art for a wide range of\ndocument image analysis (DIA) tasks including document image classification [11,\narXiv:2103.15348v2 [cs.CV] 21 Jun 2021\n')
print(docs[0].metadata)
{'source': './example_data/layout-parser-paper.pdf', 'file_path': './example_data/layout-parser-paper.pdf', 'page': 0, 'total_pages': 16, 'format': 'PDF 1.5', 'title': '', 'author': '', 'subject': '', 'keywords': '', 'creator': 'LaTeX with hyperref', 'producer': 'pdfTeX-1.40.21', 'creationDate': 'D:20210622012710Z', 'modDate': 'D:20210622012710Z', 'trapped': ''}
延迟加载
page = []
for doc in loader.lazy_load():
page.append(doc)
if len(page) >= 10:
# do some paged operation, e.g.
# index.upsert(page)
page = []
API 参考
有关 PyMuPDFLoader 所有特性和配置的详细文档,请访问 API 参考:https://python.langchain.ac.cn/api_reference/community/document_loaders/langchain_community.document_loaders.pdf.PyMuPDFLoader.html