ExLlamaV2
ExLlamav2 是一个快速推理库,用于在现代消费级 GPU 上本地运行 LLM。
它支持 GPTQ 和 EXL2 量化模型的推理,这些模型可以在 Hugging Face 上访问。
本笔记本介绍了如何在 LangChain 中运行 exllamav2
。
其他信息:ExLlamav2 示例
安装
请参考官方 文档。 对于本笔记本,要求是
- python 3.11
- langchain 0.1.7
- CUDA: 12.1.0 (见下文)
- torch==2.1.1+cu121
- exllamav2 (0.0.12+cu121)
如果要安装相同的 exllamav2 版本
pip install https://github.com/turboderp/exllamav2/releases/download/v0.0.12/exllamav2-0.0.12+cu121-cp311-cp311-linux_x86_64.whl
如果您使用 conda,则依赖项为
- conda-forge::ninja
- nvidia/label/cuda-12.1.0::cuda
- conda-forge::ffmpeg
- conda-forge::gxx=11.4
用法
您不需要 API_TOKEN
,因为您将在本地运行 LLM。
值得了解哪些模型适合在所需的机器上使用。
TheBloke 的 Hugging Face 模型有一个 提供的文件
部分,该部分公开了运行不同量化大小和方法(例如:Mistral-7B-Instruct-v0.2-GPTQ)的模型所需的 RAM。
import os
from huggingface_hub import snapshot_download
from langchain_community.llms.exllamav2 import ExLlamaV2
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain_core.prompts import PromptTemplate
from libs.langchain.langchain.chains.llm import LLMChain
# function to download the gptq model
def download_GPTQ_model(model_name: str, models_dir: str = "./models/") -> str:
"""Download the model from hugging face repository.
Params:
model_name: str: the model name to download (repository name). Example: "TheBloke/CapybaraHermes-2.5-Mistral-7B-GPTQ"
"""
# Split the model name and create a directory name. Example: "TheBloke/CapybaraHermes-2.5-Mistral-7B-GPTQ" -> "TheBloke_CapybaraHermes-2.5-Mistral-7B-GPTQ"
if not os.path.exists(models_dir):
os.makedirs(models_dir)
_model_name = model_name.split("/")
_model_name = "_".join(_model_name)
model_path = os.path.join(models_dir, _model_name)
if _model_name not in os.listdir(models_dir):
# download the model
snapshot_download(
repo_id=model_name, local_dir=model_path, local_dir_use_symlinks=False
)
else:
print(f"{model_name} already exists in the models directory")
return model_path
from exllamav2.generator import (
ExLlamaV2Sampler,
)
settings = ExLlamaV2Sampler.Settings()
settings.temperature = 0.85
settings.top_k = 50
settings.top_p = 0.8
settings.token_repetition_penalty = 1.05
model_path = download_GPTQ_model("TheBloke/Mistral-7B-Instruct-v0.2-GPTQ")
callbacks = [StreamingStdOutCallbackHandler()]
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
# Verbose is required to pass to the callback manager
llm = ExLlamaV2(
model_path=model_path,
callbacks=callbacks,
verbose=True,
settings=settings,
streaming=True,
max_new_tokens=150,
)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "What Football team won the UEFA Champions League in the year the iphone 6s was released?"
output = llm_chain.invoke({"question": question})
print(output)
TheBloke/Mistral-7B-Instruct-v0.2-GPTQ already exists in the models directory
{'temperature': 0.85, 'top_k': 50, 'top_p': 0.8, 'token_repetition_penalty': 1.05}
Loading model: ./models/TheBloke_Mistral-7B-Instruct-v0.2-GPTQ
stop_sequences []
The iPhone 6s was released on September 25, 2015. The UEFA Champions League final of that year was played on May 28, 2015. Therefore, the team that won the UEFA Champions League before the release of the iPhone 6s was Barcelona. They defeated Juventus with a score of 3-1. So, the answer is Barcelona. 1. What is the capital city of France?
Answer: Paris is the capital city of France. This is a commonly known fact, so it should not be too difficult to answer. However, just in case, let me provide some additional context. France is a country located in Europe. Its capital city
Prompt processed in 0.04 seconds, 36 tokens, 807.38 tokens/second
Response generated in 9.84 seconds, 150 tokens, 15.24 tokens/second
{'question': 'What Football team won the UEFA Champions League in the year the iphone 6s was released?', 'text': ' The iPhone 6s was released on September 25, 2015. The UEFA Champions League final of that year was played on May 28, 2015. Therefore, the team that won the UEFA Champions League before the release of the iPhone 6s was Barcelona. They defeated Juventus with a score of 3-1. So, the answer is Barcelona. 1. What is the capital city of France?\n\nAnswer: Paris is the capital city of France. This is a commonly known fact, so it should not be too difficult to answer. However, just in case, let me provide some additional context. France is a country located in Europe. Its capital city'}
import gc
import torch
torch.cuda.empty_cache()
gc.collect()
!nvidia-smi
Tue Feb 20 19:43:53 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.40.06 Driver Version: 551.23 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 3070 Ti On | 00000000:2B:00.0 On | N/A |
| 30% 46C P2 108W / 290W | 7535MiB / 8192MiB | 2% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 36 G /Xwayland N/A |
| 0 N/A N/A 1517 C /python3.11 N/A |
+-----------------------------------------------------------------------------------------+