Javelin AI 网关教程
此 Jupyter Notebook 将探讨如何使用 Python SDK 与 Javelin AI 网关进行交互。 Javelin AI 网关通过提供安全统一的端点,方便用户利用 OpenAI、Cohere、Anthropic 等大型语言模型 (LLM)。网关本身提供了一种集中机制,可以系统地推出模型,为企业提供访问安全性、策略和成本防护等。
有关 Javelin 的所有功能和优势的完整列表,请访问 www.getjavelin.io
步骤 1:简介
Javelin AI 网关是面向 AI 应用的企业级 API 网关。它集成了强大的访问安全性,确保与大型语言模型的安全交互。有关详细信息,请参阅官方文档。
步骤 2:安装
在开始之前,我们必须安装 javelin_sdk
并将 Javelin API 密钥设置为环境变量。
pip install 'javelin_sdk'
Requirement already satisfied: javelin_sdk in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (0.1.8)
Requirement already satisfied: httpx<0.25.0,>=0.24.0 in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from javelin_sdk) (0.24.1)
Requirement already satisfied: pydantic<2.0.0,>=1.10.7 in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from javelin_sdk) (1.10.12)
Requirement already satisfied: certifi in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from httpx<0.25.0,>=0.24.0->javelin_sdk) (2023.5.7)
Requirement already satisfied: httpcore<0.18.0,>=0.15.0 in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from httpx<0.25.0,>=0.24.0->javelin_sdk) (0.17.3)
Requirement already satisfied: idna in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from httpx<0.25.0,>=0.24.0->javelin_sdk) (3.4)
Requirement already satisfied: sniffio in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from httpx<0.25.0,>=0.24.0->javelin_sdk) (1.3.0)
Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from pydantic<2.0.0,>=1.10.7->javelin_sdk) (4.7.1)
Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from httpcore<0.18.0,>=0.15.0->httpx<0.25.0,>=0.24.0->javelin_sdk) (0.14.0)
Requirement already satisfied: anyio<5.0,>=3.0 in /usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages (from httpcore<0.18.0,>=0.15.0->httpx<0.25.0,>=0.24.0->javelin_sdk) (3.7.1)
Note: you may need to restart the kernel to use updated packages.
步骤 3:完成示例
本节将演示如何与 Javelin AI 网关进行交互以从大型语言模型获取完成结果。以下是一个演示此操作的 Python 脚本:(注意)假设您已在网关中设置了一个名为“eng_dept03”的路由
from langchain.chains import LLMChain
from langchain_community.llms import JavelinAIGateway
from langchain_core.prompts import PromptTemplate
route_completions = "eng_dept03"
gateway = JavelinAIGateway(
gateway_uri="https://127.0.0.1:8000", # replace with service URL or host/port of Javelin
route=route_completions,
model_name="gpt-3.5-turbo-instruct",
)
prompt = PromptTemplate("Translate the following English text to French: {text}")
llmchain = LLMChain(llm=gateway, prompt=prompt)
result = llmchain.run("podcast player")
print(result)
---------------------------------------------------------------------------
``````output
ImportError Traceback (most recent call last)
``````output
Cell In[6], line 2
1 from langchain.chains import LLMChain
----> 2 from langchain.llms import JavelinAIGateway
3 from langchain.prompts import PromptTemplate
5 route_completions = "eng_dept03"
``````output
ImportError: cannot import name 'JavelinAIGateway' from 'langchain.llms' (/usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages/langchain/llms/__init__.py)
步骤 4:嵌入示例
本节演示如何使用 Javelin AI 网关获取文本查询和文档的嵌入。以下是一个演示此操作的 Python 脚本:(注意)假设您已在网关中设置了一个名为“embeddings”的路由
from langchain_community.embeddings import JavelinAIGatewayEmbeddings
embeddings = JavelinAIGatewayEmbeddings(
gateway_uri="https://127.0.0.1:8000", # replace with service URL or host/port of Javelin
route="embeddings",
)
print(embeddings.embed_query("hello"))
print(embeddings.embed_documents(["hello"]))
---------------------------------------------------------------------------
``````output
ImportError Traceback (most recent call last)
``````output
Cell In[9], line 1
----> 1 from langchain.embeddings import JavelinAIGatewayEmbeddings
2 from langchain.embeddings.openai import OpenAIEmbeddings
4 embeddings = JavelinAIGatewayEmbeddings(
5 gateway_uri="https://127.0.0.1:8000", # replace with service URL or host/port of Javelin
6 route="embeddings",
7 )
``````output
ImportError: cannot import name 'JavelinAIGatewayEmbeddings' from 'langchain.embeddings' (/usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages/langchain/embeddings/__init__.py)
步骤 5:聊天示例
本节说明如何与 Javelin AI 网关进行交互,以方便与大型语言模型进行聊天。以下是一个演示此操作的 Python 脚本:(注意)假设您已在网关中设置了一个名为“mychatbot_route”的路由
from langchain_community.chat_models import ChatJavelinAIGateway
from langchain_core.messages import HumanMessage, SystemMessage
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Artificial Intelligence has the power to transform humanity and make the world a better place"
),
]
chat = ChatJavelinAIGateway(
gateway_uri="https://127.0.0.1:8000", # replace with service URL or host/port of Javelin
route="mychatbot_route",
model_name="gpt-3.5-turbo",
params={"temperature": 0.1},
)
print(chat(messages))
---------------------------------------------------------------------------
``````output
ImportError Traceback (most recent call last)
``````output
Cell In[8], line 1
----> 1 from langchain.chat_models import ChatJavelinAIGateway
2 from langchain.schema import HumanMessage, SystemMessage
4 messages = [
5 SystemMessage(
6 content="You are a helpful assistant that translates English to French."
(...)
10 ),
11 ]
``````output
ImportError: cannot import name 'ChatJavelinAIGateway' from 'langchain.chat_models' (/usr/local/Caskroom/miniconda/base/lib/python3.11/site-packages/langchain/chat_models/__init__.py)
步骤 6:结论 本教程介绍了 Javelin AI Gateway,并演示了如何使用 Python SDK 与其交互。请记住查看 Javelin Python SDK 以获取更多示例,并查阅官方文档以了解更多详细信息。
编程愉快!