OllamaLLM
此页面介绍了如何使用 LangChain 与 Ollama
模型进行交互。
安装
# install package
%pip install -U langchain-ollama
设置
首先,按照这些说明来设置和运行本地 Ollama 实例
- 下载并在可用的支持平台(包括 Windows Linux 子系统)上安装 Ollama
- 通过
ollama pull <name-of-model>
获取可用的 LLM 模型- 通过模型库查看可用模型列表
- 例如,
ollama pull llama3
- 这将下载模型的默认标记版本。通常,默认指向最新的、最小尺寸参数模型。
在 Mac 上,模型将下载到
~/.ollama/models
在 Linux (或 WSL) 上,模型将存储在
/usr/share/ollama/.ollama/models
- 指定感兴趣的确切模型版本,例如
ollama pull vicuna:13b-v1.5-16k-q4_0
(在此实例中,查看Vicuna
的各种标签) - 要查看所有已拉取的模型,请使用
ollama list
- 要直接从命令行与模型聊天,请使用
ollama run <name-of-model>
- 查看Ollama 文档以获取更多命令。在终端中运行
ollama help
也可查看可用的命令。
用法
from langchain_core.prompts import ChatPromptTemplate
from langchain_ollama.llms import OllamaLLM
template = """Question: {question}
Answer: Let's think step by step."""
prompt = ChatPromptTemplate.from_template(template)
model = OllamaLLM(model="llama3.1")
chain = prompt | model
chain.invoke({"question": "What is LangChain?"})
API 参考:ChatPromptTemplate | OllamaLLM
"Sounds like a plan!\n\nTo answer what LangChain is, let's break it down step by step.\n\n**Step 1: Understand the Context**\nLangChain seems to be related to language or programming, possibly in an AI context. This makes me wonder if it's a framework, library, or tool for building models or interacting with them.\n\n**Step 2: Research Possible Definitions**\nAfter some quick searching, I found that LangChain is actually a Python library for building and composing conversational AI models. It seems to provide a way to create modular and reusable components for chatbots, voice assistants, and other conversational interfaces.\n\n**Step 3: Explore Key Features and Use Cases**\nLangChain likely offers features such as:\n\n* Easy composition of conversational flows\n* Support for various input/output formats (e.g., text, audio)\n* Integration with popular AI frameworks and libraries\n\nUse cases might include building chatbots for customer service, creating voice assistants for smart homes, or developing interactive stories.\n\n**Step 4: Confirm the Definition**\nAfter this step-by-step analysis, I'm fairly confident that LangChain is a Python library for building conversational AI models. If you'd like to verify or provide more context, feel free to do so!"
多模态
Ollama 支持多模态 LLM,例如 bakllava 和 llava。
ollama pull bakllava
请务必更新 Ollama,以便您拥有支持多模态的最新版本。
import base64
from io import BytesIO
from IPython.display import HTML, display
from PIL import Image
def convert_to_base64(pil_image):
"""
Convert PIL images to Base64 encoded strings
:param pil_image: PIL image
:return: Re-sized Base64 string
"""
buffered = BytesIO()
pil_image.save(buffered, format="JPEG") # You can change the format if needed
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def plt_img_base64(img_base64):
"""
Display base64 encoded string as image
:param img_base64: Base64 string
"""
# Create an HTML img tag with the base64 string as the source
image_html = f'<img src="data:image/jpeg;base64,{img_base64}" />'
# Display the image by rendering the HTML
display(HTML(image_html))
file_path = "../../../static/img/ollama_example_img.jpg"
pil_image = Image.open(file_path)
image_b64 = convert_to_base64(pil_image)
plt_img_base64(image_b64)
<img src="" />
from langchain_ollama import OllamaLLM
llm = OllamaLLM(model="bakllava")
llm_with_image_context = llm.bind(images=[image_b64])
llm_with_image_context.invoke("What is the dollar based gross retention rate:")
API 参考:OllamaLLM
'90%'