跳到主要内容

vLLM

vLLM 是一个快速且易于使用的 LLM 推理和服务库,提供

  • 最先进的服务吞吐量
  • 使用 PagedAttention 有效管理注意力键和值内存
  • 持续批处理传入请求
  • 优化的 CUDA 内核

此笔记本介绍了如何使用 langchain 和 vLLM 使用 LLM。

要使用,您应该安装 vllm python 包。

%pip install --upgrade --quiet  vllm -q
from langchain_community.llms import VLLM

llm = VLLM(
model="mosaicml/mpt-7b",
trust_remote_code=True, # mandatory for hf models
max_new_tokens=128,
top_k=10,
top_p=0.95,
temperature=0.8,
)

print(llm.invoke("What is the capital of France ?"))
API 参考:VLLM
INFO 08-06 11:37:33 llm_engine.py:70] Initializing an LLM engine with config: model='mosaicml/mpt-7b', tokenizer='mosaicml/mpt-7b', tokenizer_mode=auto, trust_remote_code=True, dtype=torch.bfloat16, use_dummy_weights=False, download_dir=None, use_np_weights=False, tensor_parallel_size=1, seed=0)
INFO 08-06 11:37:41 llm_engine.py:196] # GPU blocks: 861, # CPU blocks: 512
``````output
Processed prompts: 100%|██████████| 1/1 [00:00<00:00, 2.00it/s]
``````output

What is the capital of France ? The capital of France is Paris.

将模型集成到 LLMChain 中

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm_chain = LLMChain(prompt=prompt, llm=llm)

question = "Who was the US president in the year the first Pokemon game was released?"

print(llm_chain.invoke(question))
API 参考:LLMChain | PromptTemplate
Processed prompts: 100%|██████████| 1/1 [00:01<00:00,  1.34s/it]
``````output


1. The first Pokemon game was released in 1996.
2. The president was Bill Clinton.
3. Clinton was president from 1993 to 2001.
4. The answer is Clinton.

分布式推理

vLLM 支持分布式张量并行推理和服务。

要使用 LLM 类运行多 GPU 推理,请将 tensor_parallel_size 参数设置为您要使用的 GPU 数量。例如,要在 4 个 GPU 上运行推理

from langchain_community.llms import VLLM

llm = VLLM(
model="mosaicml/mpt-30b",
tensor_parallel_size=4,
trust_remote_code=True, # mandatory for hf models
)

llm.invoke("What is the future of AI?")
API 参考:VLLM

量化

vLLM 支持 awq 量化。要启用它,请将 quantization 传递给 vllm_kwargs

llm_q = VLLM(
model="TheBloke/Llama-2-7b-Chat-AWQ",
trust_remote_code=True,
max_new_tokens=512,
vllm_kwargs={"quantization": "awq"},
)

与 OpenAI 兼容的服务器

vLLM 可以部署为模拟 OpenAI API 协议的服务器。这允许 vLLM 作为使用 OpenAI API 的应用程序的直接替代品。

可以以与 OpenAI API 相同的格式查询此服务器。

与 OpenAI 兼容的完成

from langchain_community.llms import VLLMOpenAI

llm = VLLMOpenAI(
openai_api_key="EMPTY",
openai_api_base="https://127.0.0.1:8000/v1",
model_name="tiiuae/falcon-7b",
model_kwargs={"stop": ["."]},
)
print(llm.invoke("Rome is"))
API 参考:VLLMOpenAI
 a city that is filled with history, ancient buildings, and art around every corner

LoRA 适配器

LoRA 适配器可以与任何实现 SupportsLoRA 的 vLLM 模型一起使用。

from langchain_community.llms import VLLM
from vllm.lora.request import LoRARequest

llm = VLLM(
model="meta-llama/Llama-3.2-3B-Instruct",
max_new_tokens=300,
top_k=1,
top_p=0.90,
temperature=0.1,
vllm_kwargs={
"gpu_memory_utilization": 0.5,
"enable_lora": True,
"max_model_len": 350,
},
)
LoRA_ADAPTER_PATH = "path/to/adapter"
lora_adapter = LoRARequest("lora_adapter", 1, LoRA_ADAPTER_PATH)

print(
llm.invoke("What are some popular Korean street foods?", lora_request=lora_adapter)
)
API 参考:VLLM

此页是否对您有帮助?