跳到主要内容
Open In ColabOpen on GitHub

RAGatouille

RAGatouille 使 ColBERT 的使用变得尽可能简单! ColBERT 是一种快速准确的检索模型,能够在几十毫秒内对大型文本集合进行可扩展的基于 BERT 的搜索。

请参阅《ColBERTv2:通过轻量级后期交互实现高效检索》论文。

我们可以通过多种方式使用 RAGatouille。

设置

该集成位于 ragatouille 包中。

pip install -U ragatouille
from ragatouille import RAGPretrainedModel

RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
[Jan 10, 10:53:28] Loading segmented_maxsim_cpp extension (set COLBERT_LOAD_TORCH_EXTENSION_VERBOSE=True for more info)...
``````output
/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py:125: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.
warnings.warn(

检索器

我们可以将 RAGatouille 用作检索器。有关更多信息,请参阅RAGatouille 检索器

文档压缩器

我们还可以直接使用 RAGatouille 作为重排序器。这将使我们能够使用 ColBERT 对任何通用检索器检索到的结果进行重排序。这样做的好处是,我们可以在任何现有索引之上进行此操作,因此无需创建新索引。我们可以通过使用 LangChain 中的文档压缩器抽象来实现此目的。

设置原始检索器

首先,让我们设置一个原始检索器作为示例。

import requests
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter


def get_wikipedia_page(title: str):
"""
Retrieve the full text content of a Wikipedia page.

:param title: str - Title of the Wikipedia page.
:return: str - Full text content of the page as raw string.
"""
# Wikipedia API endpoint
URL = "https://en.wikipedia.org/w/api.php"

# Parameters for the API request
params = {
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
}

# Custom User-Agent header to comply with Wikipedia's best practices
headers = {"User-Agent": "RAGatouille_tutorial/0.0.1 (ben@clavie.eu)"}

response = requests.get(URL, params=params, headers=headers)
data = response.json()

# Extracting page content
page = next(iter(data["query"]["pages"].values()))
return page["extract"] if "extract" in page else None


text = get_wikipedia_page("Hayao_Miyazaki")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
texts = text_splitter.create_documents([text])
retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever(
search_kwargs={"k": 10}
)
docs = retriever.invoke("What animation studio did Miyazaki found")
docs[0]
Document(page_content='collaborative projects. In April 1984, Miyazaki opened his own office in Suginami Ward, naming it Nibariki.')

我们可以看到结果与所提问题并非非常相关

使用 ColBERT 作为重排序器

from langchain.retrievers import ContextualCompressionRetriever

compression_retriever = ContextualCompressionRetriever(
base_compressor=RAG.as_langchain_document_compressor(), base_retriever=retriever
)

compressed_docs = compression_retriever.invoke(
"What animation studio did Miyazaki found"
)
/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/torch/amp/autocast_mode.py:250: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling
warnings.warn(
compressed_docs[0]
Document(page_content='In June 1985, Miyazaki, Takahata, Tokuma and Suzuki founded the animation production company Studio Ghibli, with funding from Tokuma Shoten. Studio Ghibli\'s first film, Laputa: Castle in the Sky (1986), employed the same production crew of Nausicaä. Miyazaki\'s designs for the film\'s setting were inspired by Greek architecture and "European urbanistic templates". Some of the architecture in the film was also inspired by a Welsh mining town; Miyazaki witnessed the mining strike upon his first', metadata={'relevance_score': 26.5194149017334})

这个答案更具相关性!