RAGatouille
RAGatouille 使得使用
ColBERT
变得非常简单!ColBERT 是一种快速且准确的检索模型,能够在数毫秒内对大型文本集合进行可扩展的基于BERT的搜索。
我们可以通过多种方式使用RAGatouille。
设置
集成位于ragatouille
包中。
pip install -U ragatouille
from ragatouille import RAGPretrainedModel
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
[Jan 10, 10:53:28] Loading segmented_maxsim_cpp extension (set COLBERT_LOAD_TORCH_EXTENSION_VERBOSE=True for more info)...
``````output
/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py:125: UserWarning: torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.
warnings.warn(
检索器
我们可以将RAGatouille用作检索器。有关此的更多信息,请参阅RAGatouille检索器
文档压缩器
我们还可以将RAGatouille作为现成的重排序器使用。这将允许我们使用ColBERT对来自任何通用检索器的检索结果进行重排序。这样做的好处是,我们可以在任何现有索引之上执行此操作,因此我们不需要创建新的索引。我们可以通过在LangChain中使用文档压缩器抽象来实现。
设置普通检索器
首先,让我们设置一个普通检索器作为示例。
import requests
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
def get_wikipedia_page(title: str):
"""
Retrieve the full text content of a Wikipedia page.
:param title: str - Title of the Wikipedia page.
:return: str - Full text content of the page as raw string.
"""
# Wikipedia API endpoint
URL = "https://en.wikipedia.org/w/api.php"
# Parameters for the API request
params = {
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
}
# Custom User-Agent header to comply with Wikipedia's best practices
headers = {"User-Agent": "RAGatouille_tutorial/0.0.1 ([email protected])"}
response = requests.get(URL, params=params, headers=headers)
data = response.json()
# Extracting page content
page = next(iter(data["query"]["pages"].values()))
return page["extract"] if "extract" in page else None
text = get_wikipedia_page("Hayao_Miyazaki")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
texts = text_splitter.create_documents([text])
retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever(
search_kwargs={"k": 10}
)
docs = retriever.invoke("What animation studio did Miyazaki found")
docs[0]
Document(page_content='collaborative projects. In April 1984, Miyazaki opened his own office in Suginami Ward, naming it Nibariki.')
我们可以看到,结果与提出的问题不完全相关。
使用ColBERT作为重排序器
from langchain.retrievers import ContextualCompressionRetriever
compression_retriever = ContextualCompressionRetriever(
base_compressor=RAG.as_langchain_document_compressor(), base_retriever=retriever
)
compressed_docs = compression_retriever.invoke(
"What animation studio did Miyazaki found"
)
/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/torch/amp/autocast_mode.py:250: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling
warnings.warn(
compressed_docs[0]
Document(page_content='In June 1985, Miyazaki, Takahata, Tokuma and Suzuki founded the animation production company Studio Ghibli, with funding from Tokuma Shoten. Studio Ghibli\'s first film, Laputa: Castle in the Sky (1986), employed the same production crew of Nausicaä. Miyazaki\'s designs for the film\'s setting were inspired by Greek architecture and "European urbanistic templates". Some of the architecture in the film was also inspired by a Welsh mining town; Miyazaki witnessed the mining strike upon his first', metadata={'relevance_score': 26.5194149017334})
这个答案更相关了!