Rememberizer
Rememberizer 是由 SkyDeck AI Inc. 创建的 AI 应用程序的知识增强服务。
此笔记本展示了如何将文档从 Rememberizer
检索到下游使用的文档格式中。
准备工作
你需要一个 API 密钥:在 https://rememberizer.ai 创建公共知识后,你可以获得一个。获得 API 密钥后,你必须将其设置为环境变量 REMEMBERIZER_API_KEY
或在初始化 RememberizerRetriever
时将其作为 rememberizer_api_key
传递。
RememberizerRetriever
具有以下参数
- 可选的
top_k_results
:默认值=10。用于限制返回的文档数量。 - 可选的
rememberizer_api_key
:如果你没有设置环境变量REMEMBERIZER_API_KEY
,则为必需。
get_relevant_documents()
有一个参数,query
:用于在 Rememberizer.ai
的公共知识中查找文档的自由文本。
示例
基本用法
# Setup API key
from getpass import getpass
REMEMBERIZER_API_KEY = getpass()
import os
from langchain_community.retrievers import RememberizerRetriever
os.environ["REMEMBERIZER_API_KEY"] = REMEMBERIZER_API_KEY
retriever = RememberizerRetriever(top_k_results=5)
API 参考:RememberizerRetriever
docs = retriever.get_relevant_documents(query="How does Large Language Models works?")
docs[0].metadata # meta-information of the Document
{'id': 13646493,
'document_id': '17s3LlMbpkTk0ikvGwV0iLMCj-MNubIaP',
'name': 'What is a large language model (LLM)_ _ Cloudflare.pdf',
'type': 'application/pdf',
'path': '/langchain/What is a large language model (LLM)_ _ Cloudflare.pdf',
'url': 'https://drive.google.com/file/d/17s3LlMbpkTk0ikvGwV0iLMCj-MNubIaP/view',
'size': 337089,
'created_time': '',
'modified_time': '',
'indexed_on': '2024-04-04T03:36:28.886170Z',
'integration': {'id': 347, 'integration_type': 'google_drive'}}
print(docs[0].page_content[:400]) # a content of the Document
before, or contextualized in new ways. on some level they " understand " semantics in that they can associate words and concepts by their meaning, having seen them grouped together in that way millions or billions of times. how developers can quickly start building their own llms to build llm applications, developers need easy access to multiple data sets, and they need places for those data sets
在链中使用
OPENAI_API_KEY = getpass()
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model_name="gpt-3.5-turbo")
qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)
API 参考:ConversationalRetrievalChain | ChatOpenAI
questions = [
"What is RAG?",
"How does Large Language Models works?",
]
chat_history = []
for question in questions:
result = qa.invoke({"question": question, "chat_history": chat_history})
chat_history.append((question, result["answer"]))
print(f"-> **Question**: {question} \n")
print(f"**Answer**: {result['answer']} \n")
-> **Question**: What is RAG?
**Answer**: RAG stands for Retrieval-Augmented Generation. It is an AI framework that retrieves facts from an external knowledge base to enhance the responses generated by Large Language Models (LLMs) by providing up-to-date and accurate information. This framework helps users understand the generative process of LLMs and ensures that the model has access to reliable information sources.
-> **Question**: How does Large Language Models works?
**Answer**: Large Language Models (LLMs) work by analyzing massive data sets of language to comprehend and generate human language text. They are built on machine learning, specifically deep learning, which involves training a program to recognize features of data without human intervention. LLMs use neural networks, specifically transformer models, to understand context in human language, making them better at interpreting language even in vague or new contexts. Developers can quickly start building their own LLMs by accessing multiple data sets and using services like Cloudflare's Vectorize and Cloudflare Workers AI platform.