跳到主要内容

TF-IDF

TF-IDF 表示词频乘以逆文档频率。

本笔记本介绍了如何使用一个在底层使用 scikit-learn 包的 TF-IDF 的检索器。

有关 TF-IDF 详细信息的更多信息,请参阅这篇博客文章

%pip install --upgrade --quiet  scikit-learn
from langchain_community.retrievers import TFIDFRetriever
API 参考:TFIDFRetriever

使用文本创建新的检索器

retriever = TFIDFRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"])

使用文档创建新的检索器

现在您可以使用您创建的文档创建一个新的检索器。

from langchain_core.documents import Document

retriever = TFIDFRetriever.from_documents(
[
Document(page_content="foo"),
Document(page_content="bar"),
Document(page_content="world"),
Document(page_content="hello"),
Document(page_content="foo bar"),
]
)
API 参考:文档

使用检索器

我们现在可以使用检索器了!

result = retriever.invoke("foo")
result
[Document(page_content='foo', metadata={}),
Document(page_content='foo bar', metadata={}),
Document(page_content='hello', metadata={}),
Document(page_content='world', metadata={})]

保存和加载

您可以轻松保存和加载此检索器,使其便于本地开发!

retriever.save_local("testing.pkl")
retriever_copy = TFIDFRetriever.load_local("testing.pkl")
retriever_copy.invoke("foo")
[Document(page_content='foo', metadata={}),
Document(page_content='foo bar', metadata={}),
Document(page_content='hello', metadata={}),
Document(page_content='world', metadata={})]

此页面是否对您有所帮助?