百度千帆
百度 AI 云千帆平台是面向企业开发者的一站式大模型开发和服务运营平台。千帆不仅提供包括文心一言(ERNIE-Bot)模型和第三方开源模型,还提供各种 AI 开发工具和全套开发环境,方便客户轻松使用和开发大模型应用。
基本上,这些模型可以分为以下几种类型
- 嵌入
- 聊天
- 完成
在本笔记本中,我们将介绍如何使用 langchain 与 千帆,主要是在 Embedding
中,对应 langchain 中的 langchain/embeddings
包。
API 初始化
要使用基于百度千帆的 LLM 服务,您需要初始化这些参数。
您可以选择在环境变量中初始化 AK、SK 或初始化参数。
export QIANFAN_AK=XXX
export QIANFAN_SK=XXX
"""For basic init and call"""
import os
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
os.environ["QIANFAN_AK"] = "your_ak"
os.environ["QIANFAN_SK"] = "your_sk"
embed = QianfanEmbeddingsEndpoint(
# qianfan_ak='xxx',
# qianfan_sk='xxx'
)
res = embed.embed_documents(["hi", "world"])
async def aioEmbed():
res = await embed.aembed_query("qianfan")
print(res[:8])
await aioEmbed()
async def aioEmbedDocs():
res = await embed.aembed_documents(["hi", "world"])
for r in res:
print("", r[:8])
await aioEmbedDocs()
API 参考:QianfanEmbeddingsEndpoint
[INFO] [09-15 20:01:35] logging.py:55 [t:140292313159488]: trying to refresh access_token
[INFO] [09-15 20:01:35] logging.py:55 [t:140292313159488]: successfully refresh access_token
[INFO] [09-15 20:01:35] logging.py:55 [t:140292313159488]: requesting llm api endpoint: /embeddings/embedding-v1
[INFO] [09-15 20:01:35] logging.py:55 [t:140292313159488]: async requesting llm api endpoint: /embeddings/embedding-v1
[INFO] [09-15 20:01:35] logging.py:55 [t:140292313159488]: async requesting llm api endpoint: /embeddings/embedding-v1
``````output
[-0.03313107788562775, 0.052325375378131866, 0.04951248690485954, 0.0077608139254152775, -0.05907672271132469, -0.010798933915793896, 0.03741293027997017, 0.013969100080430508]
[0.0427522286772728, -0.030367236584424973, -0.14847028255462646, 0.055074431002140045, -0.04177454113960266, -0.059512972831726074, -0.043774791061878204, 0.0028191760648041964]
[0.03803155943751335, -0.013231384567916393, 0.0032379645854234695, 0.015074018388986588, -0.006529552862048149, -0.13813287019729614, 0.03297128155827522, 0.044519297778606415]
在千帆中使用不同的模型
如果您想部署基于 Ernie Bot 或第三方开源模型的自定义模型,您可以按照以下步骤操作。
-
- (可选,如果模型包含在默认模型中,请跳过此步骤)在千帆控制台中部署您的模型,获取您自己的自定义部署端点。
-
- 在初始化中设置名为
endpoint
的字段。
- 在初始化中设置名为
embed = QianfanEmbeddingsEndpoint(model="bge_large_zh", endpoint="bge_large_zh")
res = embed.embed_documents(["hi", "world"])
for r in res:
print(r[:8])
[INFO] [09-15 20:01:40] logging.py:55 [t:140292313159488]: requesting llm api endpoint: /embeddings/bge_large_zh
``````output
[-0.0001582596160005778, -0.025089964270591736, -0.03997539356350899, 0.013156415894627571, 0.000135212714667432, 0.012428865768015385, 0.016216561198234558, -0.04126659780740738]
[0.0019113451708108187, -0.008625439368188381, -0.0531032420694828, -0.0018436014652252197, -0.01818147301673889, 0.010310115292668343, -0.008867680095136166, -0.021067561581730843]