UpstageEmbeddings
本笔记本介绍了如何开始使用 Upstage 嵌入模型。
安装
安装 langchain-upstage
包。
pip install -U langchain-upstage
环境设置
确保设置以下环境变量
UPSTAGE_API_KEY
: 您在 Upstage 控制台获取的 Upstage API 密钥。
import os
os.environ["UPSTAGE_API_KEY"] = "YOUR_API_KEY"
用法
初始化 UpstageEmbeddings
类。
from langchain_upstage import UpstageEmbeddings
embeddings = UpstageEmbeddings(model="solar-embedding-1-large")
API 参考:UpstageEmbeddings
使用 embed_documents
嵌入文本或文档列表。
doc_result = embeddings.embed_documents(
["Sung is a professor.", "This is another document"]
)
print(doc_result)
使用 embed_query
嵌入查询字符串。
query_result = embeddings.embed_query("What does Sung do?")
print(query_result)
使用 aembed_documents
和 aembed_query
进行异步操作。
# async embed query
await embeddings.aembed_query("My query to look up")
# async embed documents
await embeddings.aembed_documents(
["This is a content of the document", "This is another document"]
)
与向量存储一起使用
您可以将 UpstageEmbeddings
与向量存储组件一起使用。以下演示了一个简单的示例。
from langchain_community.vectorstores import DocArrayInMemorySearch
vectorstore = DocArrayInMemorySearch.from_texts(
["harrison worked at kensho", "bears like to eat honey"],
embedding=UpstageEmbeddings(model="solar-embedding-1-large"),
)
retriever = vectorstore.as_retriever()
docs = retriever.invoke("Where did Harrison work?")
print(docs)
API 参考:DocArrayInMemorySearch