跳转到主要内容

Gmail 工具包

这将帮助你开始使用 GMail 工具包。此工具包与 GMail API 交互以读取邮件、起草和发送邮件等。有关所有 GmailToolkit 功能和配置的详细文档,请访问API 参考

设置

要使用此工具包,您需要按照Gmail API 文档中的说明设置您的凭据。下载 credentials.json 文件后,即可开始使用 Gmail API。

安装

此工具包位于 langchain-google-community 包中。我们需要 gmail 额外项

%pip install -qU langchain-google-community\[gmail\]

如果您想从单个工具的运行中获取自动跟踪,您还可以通过取消注释下面的内容来设置您的 LangSmith API 密钥

# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

实例化

默认情况下,工具包会读取本地 credentials.json 文件。您也可以手动提供一个 Credentials 对象。

from langchain_google_community import GmailToolkit

toolkit = GmailToolkit()
API 参考:GmailToolkit

自定义身份验证

在幕后,使用以下方法创建 googleapi 资源。您可以手动构建一个 googleapi 资源以进行更多身份验证控制。

from langchain_google_community.gmail.utils import (
build_resource_service,
get_gmail_credentials,
)

# Can review scopes here https://developers.google.com/gmail/api/auth/scopes
# For instance, readonly scope is 'https://www.googleapis.com/auth/gmail.readonly'
credentials = get_gmail_credentials(
token_file="token.json",
scopes=["https://mail.google.com/"],
client_secrets_file="credentials.json",
)
api_resource = build_resource_service(credentials=credentials)
toolkit = GmailToolkit(api_resource=api_resource)

工具

查看可用工具

tools = toolkit.get_tools()
tools
[GmailCreateDraft(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>),
GmailSendMessage(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>),
GmailSearch(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>),
GmailGetMessage(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>),
GmailGetThread(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>)]

在代理中使用

下面我们将展示如何将工具包合并到代理中。

我们将需要一个 LLM 或聊天模型

pip install -qU langchain-openai
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-4o-mini")
from langgraph.prebuilt import create_react_agent

agent_executor = create_react_agent(llm, tools)
example_query = "Draft an email to [email protected] thanking them for coffee."

events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
================================ Human Message =================================

Draft an email to [email protected] thanking them for coffee.
================================== Ai Message ==================================
Tool Calls:
create_gmail_draft (call_slGkYKZKA6h3Mf1CraUBzs6M)
Call ID: call_slGkYKZKA6h3Mf1CraUBzs6M
Args:
message: Dear Fake,

I wanted to take a moment to thank you for the coffee yesterday. It was a pleasure catching up with you. Let's do it again soon!

Best regards,
[Your Name]
to: ['[email protected]']
subject: Thank You for the Coffee
================================= Tool Message =================================
Name: create_gmail_draft

Draft created. Draft Id: r-7233782721440261513
================================== Ai Message ==================================

I have drafted an email to [email protected] thanking them for the coffee. You can review and send it from your email draft with the subject "Thank You for the Coffee".

API 参考

有关所有 GmailToolkit 功能和配置的详细文档,请访问API 参考


此页对您有帮助吗?