跳到主要内容
Open In ColabOpen on GitHub

Gmail 工具包

这将帮助您开始使用 Gmail 工具包。此工具包与 Gmail API 交互,用于读取消息、起草和发送消息等等。有关所有 GmailToolkit 功能和配置的详细文档,请参阅 API 参考

设置

要使用此工具包,您需要按照 Gmail API 文档 中说明的方式设置凭据。下载 credentials.json 文件后,您就可以开始使用 Gmail API 了。

安装

此工具包位于 langchain-google-community 包中。我们需要 gmail 额外组件。

%pip install -qU langchain-google-community\[gmail\]

为了启用单个工具的自动追踪,请设置您的 LangSmith API 密钥

# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

实例化

默认情况下,工具包读取本地 credentials.json 文件。您也可以手动提供一个 Credentials 对象。

from langchain_google_community import GmailToolkit

toolkit = GmailToolkit()
API 参考:GmailToolkit

自定义身份验证

在幕后,使用以下方法创建了一个 googleapi 资源。您可以手动构建 googleapi 资源以进行更多身份验证控制。

from langchain_google_community.gmail.utils import (
build_resource_service,
get_gmail_credentials,
)

# Can review scopes here https://developers.google.com/gmail/api/auth/scopes
# For instance, readonly scope is 'https://www.googleapis.com/auth/gmail.readonly'
credentials = get_gmail_credentials(
token_file="token.json",
scopes=["https://mail.google.com/"],
client_secrets_file="credentials.json",
)
api_resource = build_resource_service(credentials=credentials)
toolkit = GmailToolkit(api_resource=api_resource)

工具

查看可用工具

tools = toolkit.get_tools()
tools
[GmailCreateDraft(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>),
GmailSendMessage(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>),
GmailSearch(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>),
GmailGetMessage(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>),
GmailGetThread(api_resource=<googleapiclient.discovery.Resource object at 0x1094509d0>)]

在代理中使用

下面展示了如何将工具包集成到 代理中。

我们需要一个 LLM 或聊天模型

pip install -qU "langchain[google-genai]"
import getpass
import os

if not os.environ.get("GOOGLE_API_KEY"):
os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter API key for Google Gemini: ")

from langchain.chat_models import init_chat_model

llm = init_chat_model("gemini-2.0-flash", model_provider="google_genai")
from langgraph.prebuilt import create_react_agent

agent_executor = create_react_agent(llm, tools)
API 参考:create_react_agent
example_query = "Draft an email to fake@fake.com thanking them for coffee."

events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
================================ Human Message =================================

Draft an email to fake@fake.com thanking them for coffee.
================================== Ai Message ==================================
Tool Calls:
create_gmail_draft (call_slGkYKZKA6h3Mf1CraUBzs6M)
Call ID: call_slGkYKZKA6h3Mf1CraUBzs6M
Args:
message: Dear Fake,

I wanted to take a moment to thank you for the coffee yesterday. It was a pleasure catching up with you. Let's do it again soon!

Best regards,
[Your Name]
to: ['fake@fake.com']
subject: Thank You for the Coffee
================================= Tool Message =================================
Name: create_gmail_draft

Draft created. Draft Id: r-7233782721440261513
================================== Ai Message ==================================

I have drafted an email to fake@fake.com thanking them for the coffee. You can review and send it from your email draft with the subject "Thank You for the Coffee".

API 参考

有关所有 GmailToolkit 功能和配置的详细文档,请参阅 API 参考