Riza 代码解释器
Riza 代码解释器是一个基于 WASM 的隔离环境,用于运行 AI 代理生成的 Python 或 JavaScript 代码。
在本笔记本中,我们将创建一个示例,展示如何使用 Python 解决 LLM 自身无法解决的问题:计算单词“strawberry”中字母“r”的数量。
在开始之前,请从 Riza 仪表板 获取 API 密钥。有关更多指南和完整的 API 参考,请访问 Riza 代码解释器 API 文档。
请确保已安装必要的依赖项。
%pip install --upgrade --quiet langchain-community rizaio
将您的 API 密钥设置为环境变量。
%env ANTHROPIC_API_KEY=<your_anthropic_api_key_here>
%env RIZA_API_KEY=<your_riza_api_key_here>
from langchain_community.tools.riza.command import ExecPython
API 参考:ExecPython
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate
初始化 ExecPython
工具。
tools = [ExecPython()]
使用 Anthropic 的 Claude Haiku 模型初始化一个代理。
llm = ChatAnthropic(model="claude-3-haiku-20240307", temperature=0)
prompt_template = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant. Make sure to use a tool if you need to solve a problem.",
),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
agent = create_tool_calling_agent(llm, tools, prompt_template)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
# Ask a tough question
result = agent_executor.invoke({"input": "how many rs are in strawberry?"})
print(result["output"][0]["text"])
[1m> Entering new AgentExecutor chain...[0m
[32;1m[1;3m
Invoking: `riza_exec_python` with `{'code': 'word = "strawberry"\nprint(word.count("r"))'}`
responded: [{'id': 'toolu_01JwPLAAqqCNCjVuEnK8Fgut', 'input': {}, 'name': 'riza_exec_python', 'type': 'tool_use', 'index': 0, 'partial_json': '{"code": "word = \\"strawberry\\"\\nprint(word.count(\\"r\\"))"}'}]
[0m[36;1m[1;3m3
[0m[32;1m[1;3m[{'text': '\n\nThe word "strawberry" contains 3 "r" characters.', 'type': 'text', 'index': 0}][0m
[1m> Finished chain.[0m
The word "strawberry" contains 3 "r" characters.