跳到主要内容
Open In ColabOpen on GitHub

ScrapeGraph

本教程提供了 ScrapeGraph 工具的快速入门概述。有关所有 ScrapeGraph 功能和配置的详细文档,请查阅 API 参考

更多关于 ScrapeGraph AI 的信息

概述

集成详情

类别可序列化JS 支持最新包版本
SmartScraperToollangchain-scrapegraphPyPI - Version
SmartCrawlerToollangchain-scrapegraphPyPI - Version
MarkdownifyToollangchain-scrapegraphPyPI - Version
GetCreditsToollangchain-scrapegraphPyPI - Version

工具功能

工具用途输入输出
SmartScraperTool从网站提取结构化数据URL + 提示JSON
SmartCrawlerTool通过爬取从多个页面提取数据URL + 提示 + 爬取选项JSON
MarkdownifyTool将网页转换为 MarkdownURLMarkdown 文本
GetCreditsTool检查 API 积分积分信息

设置

此集成需要以下包

%pip install --quiet -U langchain-scrapegraph
Note: you may need to restart the kernel to use updated packages.

凭证

您需要 ScrapeGraph AI API 密钥才能使用这些工具。请在以下网址获取:scrapegraphai.com

import getpass
import os

if not os.environ.get("SGAI_API_KEY"):
os.environ["SGAI_API_KEY"] = getpass.getpass("ScrapeGraph AI API key:\n")

设置 LangSmith 也有助于实现一流的可观察性(但不是必需的)

os.environ["LANGSMITH_TRACING"] = "true"
os.environ["LANGSMITH_API_KEY"] = getpass.getpass()

实例化

此处展示如何实例化 ScrapeGraph 工具

from scrapegraph_py.logger import sgai_logger
import json

from langchain_scrapegraph.tools import (
GetCreditsTool,
MarkdownifyTool,
SmartCrawlerTool,
SmartScraperTool,
)

sgai_logger.set_logging(level="INFO")

smartscraper = SmartScraperTool()
smartcrawler = SmartCrawlerTool()
markdownify = MarkdownifyTool()
credits = GetCreditsTool()

调用

直接使用参数调用

让我们逐个尝试每个工具

SmartCrawler Tool

SmartCrawlerTool 允许您从网站抓取多个页面,并使用深度控制、页面限制和域名限制等高级抓取选项提取结构化数据。

# SmartScraper
result = smartscraper.invoke(
{
"user_prompt": "Extract the company name and description",
"website_url": "https://scrapegraphai.com",
}
)
print("SmartScraper Result:", result)

# Markdownify
markdown = markdownify.invoke({"website_url": "https://scrapegraphai.com"})
print("\nMarkdownify Result (first 200 chars):", markdown[:200])

# SmartCrawler
url = "https://scrapegraphai.com/"
prompt = (
"What does the company do? and I need text content from their privacy and terms"
)

# Use the tool with crawling parameters
result_crawler = smartcrawler.invoke(
{
"url": url,
"prompt": prompt,
"cache_website": True,
"depth": 2,
"max_pages": 2,
"same_domain_only": True,
}
)

print("\nSmartCrawler Result:")
print(json.dumps(result_crawler, indent=2))

# Check credits
credits_info = credits.invoke({})
print("\nCredits Info:", credits_info)
SmartScraper Result: {'company_name': 'ScrapeGraphAI', 'description': "ScrapeGraphAI is a powerful AI web scraping tool that turns entire websites into clean, structured data through a simple API. It's designed to help developers and AI companies extract valuable data from websites efficiently and transform it into formats that are ready for use in LLM applications and data analysis."}

Markdownify Result (first 200 chars): [![ScrapeGraphAI Logo](https://scrapegraphai.com/images/scrapegraphai_logo.svg)ScrapeGraphAI](https://scrapegraphai.com/)

PartnersPricingFAQ[Blog](https://scrapegraphai.com/blog)DocsLog inSign up

Op
LocalScraper Result: {'company_name': 'Company Name', 'description': 'We are a technology company focused on AI solutions.', 'contact': {'email': 'contact@example.com', 'phone': '(555) 123-4567'}}

Credits Info: {'remaining_credits': 49679, 'total_credits_used': 914}
# SmartCrawler example
from scrapegraph_py.logger import sgai_logger
import json

from langchain_scrapegraph.tools import SmartCrawlerTool

sgai_logger.set_logging(level="INFO")

# Will automatically get SGAI_API_KEY from environment
tool = SmartCrawlerTool()

# Example based on the provided code snippet
url = "https://scrapegraphai.com/"
prompt = (
"What does the company do? and I need text content from their privacy and terms"
)

# Use the tool with crawling parameters
result = tool.invoke(
{
"url": url,
"prompt": prompt,
"cache_website": True,
"depth": 2,
"max_pages": 2,
"same_domain_only": True,
}
)

print(json.dumps(result, indent=2))

使用 ToolCall 调用

我们还可以使用模型生成的 ToolCall 调用该工具

model_generated_tool_call = {
"args": {
"user_prompt": "Extract the main heading and description",
"website_url": "https://scrapegraphai.com",
},
"id": "1",
"name": smartscraper.name,
"type": "tool_call",
}
smartscraper.invoke(model_generated_tool_call)
ToolMessage(content='{"main_heading": "Get the data you need from any website", "description": "Easily extract and gather information with just a few lines of code with a simple api. Turn websites into clean and usable structured data."}', name='SmartScraper', tool_call_id='1')

链式调用

让我们使用工具与 LLM 结合分析网站

pip install -qU "langchain[google-genai]"
import getpass
import os

if not os.environ.get("GOOGLE_API_KEY"):
os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter API key for Google Gemini: ")

from langchain.chat_models import init_chat_model

llm = init_chat_model("gemini-2.0-flash", model_provider="google_genai")
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableConfig, chain

prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that can use tools to extract structured information from websites.",
),
("human", "{user_input}"),
("placeholder", "{messages}"),
]
)

llm_with_tools = llm.bind_tools([smartscraper], tool_choice=smartscraper.name)
llm_chain = prompt | llm_with_tools


@chain
def tool_chain(user_input: str, config: RunnableConfig):
input_ = {"user_input": user_input}
ai_msg = llm_chain.invoke(input_, config=config)
tool_msgs = smartscraper.batch(ai_msg.tool_calls, config=config)
return llm_chain.invoke({**input_, "messages": [ai_msg, *tool_msgs]}, config=config)


tool_chain.invoke(
"What does ScrapeGraph AI do? Extract this information from their website https://scrapegraphai.com"
)
AIMessage(content='ScrapeGraph AI is an AI-powered web scraping tool that efficiently extracts and converts website data into structured formats via a simple API. It caters to developers, data scientists, and AI researchers, offering features like easy integration, support for dynamic content, and scalability for large projects. It supports various website types, including business, e-commerce, and educational sites. Contact: contact@scrapegraphai.com.', additional_kwargs={'tool_calls': [{'id': 'call_shkRPyjyAtfjH9ffG5rSy9xj', 'function': {'arguments': '{"user_prompt":"Extract details about the products, services, and key features offered by ScrapeGraph AI, as well as any unique selling points or innovations mentioned on the website.","website_url":"https://scrapegraphai.com"}', 'name': 'SmartScraper'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 47, 'prompt_tokens': 480, 'total_tokens': 527, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_c7ca0ebaca', 'finish_reason': 'stop', 'logprobs': None}, id='run-45a12c86-d499-4273-8c59-0db926799bc7-0', tool_calls=[{'name': 'SmartScraper', 'args': {'user_prompt': 'Extract details about the products, services, and key features offered by ScrapeGraph AI, as well as any unique selling points or innovations mentioned on the website.', 'website_url': 'https://scrapegraphai.com'}, 'id': 'call_shkRPyjyAtfjH9ffG5rSy9xj', 'type': 'tool_call'}], usage_metadata={'input_tokens': 480, 'output_tokens': 47, 'total_tokens': 527, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})

API 参考

有关所有 ScrapeGraph 功能和配置的详细文档,请查阅 Langchain API 参考

或访问 官方 SDK 仓库