ScrapeGraph
此笔记本电脑提供了一个快速概览,帮助您开始使用 ScrapeGraph 工具。有关所有 ScrapeGraph 功能和配置的详细文档,请访问 API 参考。
有关 ScrapeGraph AI 的更多信息
概述
集成详情
类 | 包 | 可序列化 | JS 支持 | 最新包 |
---|---|---|---|---|
SmartScraperTool | langchain-scrapegraph | ✅ | ❌ | |
MarkdownifyTool | langchain-scrapegraph | ✅ | ❌ | |
LocalScraperTool | langchain-scrapegraph | ✅ | ❌ | |
GetCreditsTool | langchain-scrapegraph | ✅ | ❌ |
工具功能
工具 | 目的 | 输入 | 输出 |
---|---|---|---|
SmartScraperTool | 从网站提取结构化数据 | URL + 提示 | JSON |
MarkdownifyTool | 将网页转换为 Markdown | URL | Markdown 文本 |
LocalScraperTool | 从 HTML 内容中提取数据 | HTML + 提示 | JSON |
GetCreditsTool | 检查 API 信用额度 | 无 | 信用信息 |
设置
集成需要以下软件包
%pip install --quiet -U langchain-scrapegraph
Note: you may need to restart the kernel to use updated packages.
凭据
您需要一个 ScrapeGraph AI API 密钥才能使用这些工具。请在 scrapegraphai.com 获取一个。
import getpass
import os
if not os.environ.get("SGAI_API_KEY"):
os.environ["SGAI_API_KEY"] = getpass.getpass("ScrapeGraph AI API key:\n")
设置 LangSmith 以获得一流的可观察性也很有帮助(但不是必需的)
os.environ["LANGSMITH_TRACING"] = "true"
os.environ["LANGSMITH_API_KEY"] = getpass.getpass()
实例化
这里展示了如何实例化 ScrapeGraph 工具的实例
from langchain_scrapegraph.tools import (
GetCreditsTool,
LocalScraperTool,
MarkdownifyTool,
SmartScraperTool,
)
smartscraper = SmartScraperTool()
markdownify = MarkdownifyTool()
localscraper = LocalScraperTool()
credits = GetCreditsTool()
调用
使用 args 直接调用
让我们分别尝试每个工具
# SmartScraper
result = smartscraper.invoke(
{
"user_prompt": "Extract the company name and description",
"website_url": "https://scrapegraphai.com",
}
)
print("SmartScraper Result:", result)
# Markdownify
markdown = markdownify.invoke({"website_url": "https://scrapegraphai.com"})
print("\nMarkdownify Result (first 200 chars):", markdown[:200])
local_html = """
<html>
<body>
<h1>Company Name</h1>
<p>We are a technology company focused on AI solutions.</p>
<div class="contact">
<p>Email: contact@example.com</p>
<p>Phone: (555) 123-4567</p>
</div>
</body>
</html>
"""
# LocalScraper
result_local = localscraper.invoke(
{
"user_prompt": "Make a summary of the webpage and extract the email and phone number",
"website_html": local_html,
}
)
print("LocalScraper Result:", result_local)
# Check credits
credits_info = credits.invoke({})
print("\nCredits Info:", credits_info)
SmartScraper Result: {'company_name': 'ScrapeGraphAI', 'description': "ScrapeGraphAI is a powerful AI web scraping tool that turns entire websites into clean, structured data through a simple API. It's designed to help developers and AI companies extract valuable data from websites efficiently and transform it into formats that are ready for use in LLM applications and data analysis."}
Markdownify Result (first 200 chars): [ScrapeGraphAI](https://scrapegraphai.com/)
PartnersPricingFAQ[Blog](https://scrapegraphai.com/blog)DocsLog inSign up
Op
LocalScraper Result: {'company_name': 'Company Name', 'description': 'We are a technology company focused on AI solutions.', 'contact': {'email': 'contact@example.com', 'phone': '(555) 123-4567'}}
Credits Info: {'remaining_credits': 49679, 'total_credits_used': 914}
使用 ToolCall 调用
我们还可以使用模型生成的 ToolCall 调用该工具
model_generated_tool_call = {
"args": {
"user_prompt": "Extract the main heading and description",
"website_url": "https://scrapegraphai.com",
},
"id": "1",
"name": smartscraper.name,
"type": "tool_call",
}
smartscraper.invoke(model_generated_tool_call)
ToolMessage(content='{"main_heading": "Get the data you need from any website", "description": "Easily extract and gather information with just a few lines of code with a simple api. Turn websites into clean and usable structured data."}', name='SmartScraper', tool_call_id='1')
链接
让我们将我们的工具与 LLM 结合使用,以分析网站
选择 聊天模型
pip install -qU "langchain[openai]"
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain.chat_models import init_chat_model
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableConfig, chain
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that can use tools to extract structured information from websites.",
),
("human", "{user_input}"),
("placeholder", "{messages}"),
]
)
llm_with_tools = llm.bind_tools([smartscraper], tool_choice=smartscraper.name)
llm_chain = prompt | llm_with_tools
@chain
def tool_chain(user_input: str, config: RunnableConfig):
input_ = {"user_input": user_input}
ai_msg = llm_chain.invoke(input_, config=config)
tool_msgs = smartscraper.batch(ai_msg.tool_calls, config=config)
return llm_chain.invoke({**input_, "messages": [ai_msg, *tool_msgs]}, config=config)
tool_chain.invoke(
"What does ScrapeGraph AI do? Extract this information from their website https://scrapegraphai.com"
)
AIMessage(content='ScrapeGraph AI is an AI-powered web scraping tool that efficiently extracts and converts website data into structured formats via a simple API. It caters to developers, data scientists, and AI researchers, offering features like easy integration, support for dynamic content, and scalability for large projects. It supports various website types, including business, e-commerce, and educational sites. Contact: contact@scrapegraphai.com.', additional_kwargs={'tool_calls': [{'id': 'call_shkRPyjyAtfjH9ffG5rSy9xj', 'function': {'arguments': '{"user_prompt":"Extract details about the products, services, and key features offered by ScrapeGraph AI, as well as any unique selling points or innovations mentioned on the website.","website_url":"https://scrapegraphai.com"}', 'name': 'SmartScraper'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 47, 'prompt_tokens': 480, 'total_tokens': 527, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_c7ca0ebaca', 'finish_reason': 'stop', 'logprobs': None}, id='run-45a12c86-d499-4273-8c59-0db926799bc7-0', tool_calls=[{'name': 'SmartScraper', 'args': {'user_prompt': 'Extract details about the products, services, and key features offered by ScrapeGraph AI, as well as any unique selling points or innovations mentioned on the website.', 'website_url': 'https://scrapegraphai.com'}, 'id': 'call_shkRPyjyAtfjH9ffG5rSy9xj', 'type': 'tool_call'}], usage_metadata={'input_tokens': 480, 'output_tokens': 47, 'total_tokens': 527, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})
API 参考
有关所有 ScrapeGraph 功能和配置的详细文档,请访问 Langchain API 参考:https://python.langchain.ac.cn/docs/integrations/tools/scrapegraph
或访问官方 SDK 仓库:https://github.com/ScrapeGraphAI/langchain-scrapegraph