跳到主要内容
Open In ColabOpen on GitHub

Taiga

此笔记本提供了一个快速概述,帮助您开始在 langchain_taiga 中使用 Taiga 工具。有关每个工具和配置的更多详细信息,请参阅您的存储库或相关文档页面中的文档字符串。

概述

集成详细信息

可序列化JS 支持最新包
create_entity_tool, search_entities_tool, get_entity_by_ref_tool, update_entity_by_ref_tool , add_comment_by_ref_tool, add_attachment_by_ref_toollangchain-taigaN/A待定PyPI - Version

工具功能

  • create_entity_tool: 在 Taiga 中创建用户故事、任务和问题。
  • search_entities_tool: 在 Taiga 中搜索用户故事、任务和问题。
  • get_entity_by_ref_tool: 通过引用获取用户故事、任务或问题。
  • update_entity_by_ref_tool: 通过引用更新用户故事、任务或问题。
  • add_comment_by_ref_tool: 向用户故事、任务或问题添加评论。
  • add_attachment_by_ref_tool: 向用户故事、任务或问题添加附件。

设置

此集成位于 langchain-taiga 包中。

%pip install --quiet -U langchain-taiga
/home/henlein/Workspace/PyCharm/langchain/.venv/bin/python: No module named pip
Note: you may need to restart the kernel to use updated packages.

凭证

此集成需要您设置 TAIGA_URLTAIGA_API_URLTAIGA_USERNAMETAIGA_PASSWORDOPENAI_API_KEY 作为环境变量,以便使用 Taiga 进行身份验证。

export TAIGA_URL="https://taiga.xyz.org/"
export TAIGA_API_URL="https://taiga.xyz.org/"
export TAIGA_USERNAME="username"
export TAIGA_PASSWORD="pw"
export OPENAI_API_KEY="OPENAI_API_KEY"

设置 LangSmith 以获得一流的可观测性也很有帮助(但不是必需的)

# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass()

实例化

以下示例展示了如何在 langchain_taiga 中实例化 Taiga 工具。根据您的具体使用情况进行调整。

from langchain_taiga.tools.discord_read_messages import create_entity_tool
from langchain_taiga.tools.discord_send_messages import search_entities_tool

create_tool = create_entity_tool
search_tool = search_entities_tool

调用

使用参数直接调用

以下是一个使用字典中的关键字参数调用工具的简单示例。

from langchain_taiga.tools.taiga_tools import (
add_attachment_by_ref_tool,
add_comment_by_ref_tool,
create_entity_tool,
get_entity_by_ref_tool,
search_entities_tool,
update_entity_by_ref_tool,
)

response = create_entity_tool.invoke(
{
"project_slug": "slug",
"entity_type": "us",
"subject": "subject",
"status": "new",
"description": "desc",
"parent_ref": 5,
"assign_to": "user",
"due_date": "2022-01-01",
"tags": ["tag1", "tag2"],
}
)

response = search_entities_tool.invoke(
{"project_slug": "slug", "query": "query", "entity_type": "task"}
)

response = get_entity_by_ref_tool.invoke(
{"entity_type": "user_story", "project_id": 1, "ref": "1"}
)

response = update_entity_by_ref_tool.invoke(
{"project_slug": "slug", "entity_ref": 555, "entity_type": "us"}
)


response = add_comment_by_ref_tool.invoke(
{"project_slug": "slug", "entity_ref": 3, "entity_type": "us", "comment": "new"}
)

response = add_attachment_by_ref_tool.invoke(
{
"project_slug": "slug",
"entity_ref": 3,
"entity_type": "us",
"attachment_url": "url",
"content_type": "png",
"description": "desc",
}
)

使用 ToolCall 调用

如果您有模型生成的 ToolCall,请将其传递给 tool.invoke(),格式如下所示。

# This is usually generated by a model, but we'll create a tool call directly for demo purposes.
model_generated_tool_call = {
"args": {"project_slug": "slug", "query": "query", "entity_type": "task"},
"id": "1",
"name": search_entities_tool.name,
"type": "tool_call",
}
tool.invoke(model_generated_tool_call)

链接

以下是一个更完整的示例,展示了如何在链或代理中将 create_entity_toolsearch_entities_tool 工具与 LLM 集成。此示例假定您有一个函数(例如 create_react_agent),该函数设置了一个 LangChain 风格的代理,该代理能够在适当的时候调用工具。

# Example: Using Taiga Tools in an Agent

from langgraph.prebuilt import create_react_agent
from langchain_taiga.tools.taiga_tools import create_entity_tool, search_entities_tool

# 1. Instantiate or configure your language model
# (Replace with your actual LLM, e.g., ChatOpenAI(temperature=0))
llm = ...

# 2. Build an agent that has access to these tools
agent_executor = create_react_agent(llm, [create_entity_tool, search_entities_tool])

# 4. Formulate a user query that may invoke one or both tools
example_query = "Please create a new user story with the subject 'subject' in slug project: 'slug'"

# 5. Execute the agent in streaming mode (or however your code is structured)
events = agent_executor.stream(
{"messages": [("user", example_query)]},
stream_mode="values",
)

# 6. Print out the model's responses (and any tool outputs) as they arrive
for event in events:
event["messages"][-1].pretty_print()

API 参考

请参阅以下位置的文档字符串

以了解用法详情、参数和高级配置。


此页面是否有帮助?