如何创建自定义聊天模型类
本指南假定您熟悉以下概念
在本指南中,我们将学习如何使用 LangChain 抽象创建自定义聊天模型。
使用标准的 BaseChatModel
接口包装您的 LLM,允许您在现有的 LangChain 程序中使用您的 LLM,只需最少的代码修改!
作为额外的好处,您的 LLM 将自动成为 LangChain Runnable,并将开箱即用地受益于一些优化(例如,通过线程池进行批量处理)、异步支持、astream_events
API 等。
输入和输出
首先,我们需要讨论 消息,这是聊天模型的输入和输出。
消息
聊天模型将消息作为输入,并返回一条消息作为输出。
LangChain 有一些内置消息类型
消息类型 | 描述 |
---|---|
SystemMessage | 用于启动 AI 行为,通常作为一系列输入消息的第一个传递。 |
HumanMessage | 表示来自与聊天模型交互的人的消息。 |
AIMessage | 表示来自聊天模型的消息。 这可以是文本或调用工具的请求。 |
FunctionMessage / ToolMessage | 用于将工具调用结果传递回模型的消息。 |
AIMessageChunk / HumanMessageChunk / ... | 每种消息类型的 Chunk 变体。 |
ToolMessage
和 FunctionMessage
紧密遵循 OpenAI 的 function
和 tool
角色。
这是一个快速发展的领域,随着更多模型添加函数调用功能。 预计此模式将会增加。
from langchain_core.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
流式变体
所有聊天消息都有一个流式变体,名称中包含 Chunk
。
from langchain_core.messages import (
AIMessageChunk,
FunctionMessageChunk,
HumanMessageChunk,
SystemMessageChunk,
ToolMessageChunk,
)
当从聊天模型流式传输输出时,会使用这些 chunks,它们都定义了一个累加属性!
AIMessageChunk(content="Hello") + AIMessageChunk(content=" World!")
AIMessageChunk(content='Hello World!')
基础聊天模型
让我们实现一个聊天模型,该模型回显提示中最后一条消息的前 n
个字符!
为此,我们将继承自 BaseChatModel
,并且需要实现以下内容
方法/属性 | 描述 | 必需/可选 |
---|---|---|
_generate | 用于从提示生成聊天结果 | 必需 |
_llm_type (属性) | 用于唯一标识模型类型。 用于日志记录。 | 必需 |
_identifying_params (属性) | 表示用于追踪目的的模型参数化。 | 可选 |
_stream | 用于实现流式传输。 | 可选 |
_agenerate | 用于实现原生异步方法。 | 可选 |
_astream | 用于实现 _stream 的异步版本。 | 可选 |
如果实现了 _stream
,则 _astream
实现使用 run_in_executor
在单独的线程中启动同步 _stream
;否则,它会回退使用 _agenerate
。
如果您想重用 _stream
实现,可以使用此技巧,但如果您能够实现原生异步代码,那将是更好的解决方案,因为该代码将以更少的开销运行。
实现
from typing import Any, Dict, Iterator, List, Optional
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from pydantic import Field
class ChatParrotLink(BaseChatModel):
"""A custom chat model that echoes the first `parrot_buffer_length` characters
of the input.
When contributing an implementation to LangChain, carefully document
the model including the initialization parameters, include
an example of how to initialize the model and include any relevant
links to the underlying models documentation or API.
Example:
.. code-block:: python
model = ChatParrotLink(parrot_buffer_length=2, model="bird-brain-001")
result = model.invoke([HumanMessage(content="hello")])
result = model.batch([[HumanMessage(content="hello")],
[HumanMessage(content="world")]])
"""
model_name: str = Field(alias="model")
"""The name of the model"""
parrot_buffer_length: int
"""The number of characters from the last message of the prompt to be echoed."""
temperature: Optional[float] = None
max_tokens: Optional[int] = None
timeout: Optional[int] = None
stop: Optional[List[str]] = None
max_retries: int = 2
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Override the _generate method to implement the chat model logic.
This can be a call to an API, a call to a local model, or any other
implementation that generates a response to the input prompt.
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
# Replace this with actual logic to generate a response from a list
# of messages.
last_message = messages[-1]
tokens = last_message.content[: self.parrot_buffer_length]
ct_input_tokens = sum(len(message.content) for message in messages)
ct_output_tokens = len(tokens)
message = AIMessage(
content=tokens,
additional_kwargs={}, # Used to add additional payload to the message
response_metadata={ # Use for response metadata
"time_in_seconds": 3,
},
usage_metadata={
"input_tokens": ct_input_tokens,
"output_tokens": ct_output_tokens,
"total_tokens": ct_input_tokens + ct_output_tokens,
},
)
##
generation = ChatGeneration(message=message)
return ChatResult(generations=[generation])
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Stream the output of the model.
This method should be implemented if the model can generate output
in a streaming fashion. If the model does not support streaming,
do not implement it. In that case streaming requests will be automatically
handled by the _generate method.
Args:
messages: the prompt composed of a list of messages.
stop: a list of strings on which the model should stop generating.
If generation stops due to a stop token, the stop token itself
SHOULD BE INCLUDED as part of the output. This is not enforced
across models right now, but it's a good practice to follow since
it makes it much easier to parse the output of the model
downstream and understand why generation stopped.
run_manager: A run manager with callbacks for the LLM.
"""
last_message = messages[-1]
tokens = str(last_message.content[: self.parrot_buffer_length])
ct_input_tokens = sum(len(message.content) for message in messages)
for token in tokens:
usage_metadata = UsageMetadata(
{
"input_tokens": ct_input_tokens,
"output_tokens": 1,
"total_tokens": ct_input_tokens + 1,
}
)
ct_input_tokens = 0
chunk = ChatGenerationChunk(
message=AIMessageChunk(content=token, usage_metadata=usage_metadata)
)
if run_manager:
# This is optional in newer versions of LangChain
# The on_llm_new_token will be called automatically
run_manager.on_llm_new_token(token, chunk=chunk)
yield chunk
# Let's add some other information (e.g., response metadata)
chunk = ChatGenerationChunk(
message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
)
if run_manager:
# This is optional in newer versions of LangChain
# The on_llm_new_token will be called automatically
run_manager.on_llm_new_token(token, chunk=chunk)
yield chunk
@property
def _llm_type(self) -> str:
"""Get the type of language model used by this chat model."""
return "echoing-chat-model-advanced"
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Return a dictionary of identifying parameters.
This information is used by the LangChain callback system, which
is used for tracing purposes make it possible to monitor LLMs.
"""
return {
# The model name allows users to specify custom token counting
# rules in LLM monitoring applications (e.g., in LangSmith users
# can provide per token pricing for their model and monitor
# costs for the given LLM.)
"model_name": self.model_name,
}
让我们测试一下 🧪
聊天模型将实现 LangChain 的标准 Runnable
接口,许多 LangChain 抽象都支持该接口!
model = ChatParrotLink(parrot_buffer_length=3, model="my_custom_model")
model.invoke(
[
HumanMessage(content="hello!"),
AIMessage(content="Hi there human!"),
HumanMessage(content="Meow!"),
]
)
AIMessage(content='Meo', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-cf11aeb6-8ab6-43d7-8c68-c1ef89b6d78e-0', usage_metadata={'input_tokens': 26, 'output_tokens': 3, 'total_tokens': 29})
model.invoke("hello")
AIMessage(content='hel', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-618e5ed4-d611-4083-8cf1-c270726be8d9-0', usage_metadata={'input_tokens': 5, 'output_tokens': 3, 'total_tokens': 8})
model.batch(["hello", "goodbye"])
[AIMessage(content='hel', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-eea4ed7d-d750-48dc-90c0-7acca1ff388f-0', usage_metadata={'input_tokens': 5, 'output_tokens': 3, 'total_tokens': 8}),
AIMessage(content='goo', additional_kwargs={}, response_metadata={'time_in_seconds': 3}, id='run-07cfc5c1-3c62-485f-b1e0-3d46e1547287-0', usage_metadata={'input_tokens': 7, 'output_tokens': 3, 'total_tokens': 10})]
for chunk in model.stream("cat"):
print(chunk.content, end="|")
c|a|t||
请查看模型中 _astream
的实现! 如果您不实现它,则不会流式传输任何输出!
async for chunk in model.astream("cat"):
print(chunk.content, end="|")
c|a|t||
让我们尝试使用 astream events API,这也将有助于再次检查是否已实现所有回调!
async for event in model.astream_events("cat", version="v1"):
print(event)
{'event': 'on_chat_model_start', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'name': 'ChatParrotLink', 'tags': [], 'metadata': {}, 'data': {'input': 'cat'}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='c', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 3, 'output_tokens': 1, 'total_tokens': 4})}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='a', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 0, 'output_tokens': 1, 'total_tokens': 1})}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='t', additional_kwargs={}, response_metadata={}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 0, 'output_tokens': 1, 'total_tokens': 1})}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'name': 'ChatParrotLink', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={'time_in_sec': 3}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a')}, 'parent_ids': []}
{'event': 'on_chat_model_end', 'name': 'ChatParrotLink', 'run_id': '3f0b5501-5c78-45b3-92fc-8322a6a5024a', 'tags': [], 'metadata': {}, 'data': {'output': AIMessageChunk(content='cat', additional_kwargs={}, response_metadata={'time_in_sec': 3}, id='run-3f0b5501-5c78-45b3-92fc-8322a6a5024a', usage_metadata={'input_tokens': 3, 'output_tokens': 3, 'total_tokens': 6})}, 'parent_ids': []}
贡献
我们感谢所有聊天模型集成贡献。
这是一个清单,可帮助确保您的贡献被添加到 LangChain
文档
- 模型包含所有初始化参数的文档字符串,因为这些参数将在API 参考中显示。
- 如果模型由服务驱动,则模型的类文档字符串包含指向模型 API 的链接。
测试
- 向重写的方法添加单元测试或集成测试。 验证如果您已重写相应的代码,
invoke
、ainvoke
、batch
、stream
是否可以工作。
流式传输(如果您正在实现它)
- 实现 _stream 方法以使流式传输工作
停止 Token 行为
- 应尊重停止 token
- 停止 token 应作为响应的一部分包含在内
密钥 API 密钥
- 如果您的模型连接到 API,它可能会接受 API 密钥作为其初始化的一部分。 对密钥使用 Pydantic 的
SecretStr
类型,这样当人们打印模型时,它们就不会被意外打印出来。
识别参数
- 在识别参数中包含
model_name
优化
考虑提供原生异步支持以减少模型带来的开销!
- 提供了
_agenerate
的原生异步版本(由ainvoke
使用) - 提供了
_astream
的原生异步版本(由astream
使用)
下一步
您现在已经学习了如何创建自己的自定义聊天模型。
接下来,查看本节中关于聊天模型的其他操作指南,例如如何让模型返回结构化输出或如何跟踪聊天模型 token 使用量。