如何创建自定义检索器
概述
许多 LLM 应用程序都涉及使用 检索器从外部数据源检索信息。
检索器负责为给定用户 query 检索相关 文档 列表。
检索到的文档通常会被格式化为提示,然后输入到 LLM 中,以便 LLM 可以利用这些信息生成适当的响应(例如,根据知识库回答用户问题)。
接口
要创建自己的检索器,您需要扩展 BaseRetriever 类并实现以下方法
| 方法 | 描述 | 必选/可选 | 
|---|---|---|
| _get_relevant_documents | 获取与查询相关的文档。 | 必选 | 
| _aget_relevant_documents | 实现以提供原生异步支持。 | 可选 | 
_get_relevant_documents 内部的逻辑可以涉及任意调用数据库或使用请求调用网页。
通过继承 BaseRetriever,您的检索器将自动成为 LangChain Runnable,并开箱即用地获得标准的 Runnable 功能!
您可以使用 RunnableLambda 或 RunnableGenerator 来实现检索器。
将检索器实现为 BaseRetriever 而不是 RunnableLambda(一个自定义的可运行函数)的主要好处是,BaseRetriever 是一个众所周知的 LangChain 实体,因此某些监控工具可能会为检索器实现专门的行为。另一个区别是 BaseRetriever 在某些 API 中与 RunnableLambda 的行为会略有不同;例如,在 astream_events API 中,start 事件将是 on_retriever_start 而不是 on_chain_start。
示例
让我们实现一个简单的检索器,它返回文本包含用户查询中文本的所有文档。
from typing import List
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
class ToyRetriever(BaseRetriever):
    """A toy retriever that contains the top k documents that contain the user query.
    This retriever only implements the sync method _get_relevant_documents.
    If the retriever were to involve file access or network access, it could benefit
    from a native async implementation of `_aget_relevant_documents`.
    As usual, with Runnables, there's a default async implementation that's provided
    that delegates to the sync implementation running on another thread.
    """
    documents: List[Document]
    """List of documents to retrieve from."""
    k: int
    """Number of top results to return"""
    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        """Sync implementations for retriever."""
        matching_documents = []
        for document in self.documents:
            if len(matching_documents) > self.k:
                return matching_documents
            if query.lower() in document.page_content.lower():
                matching_documents.append(document)
        return matching_documents
    # Optional: Provide a more efficient native implementation by overriding
    # _aget_relevant_documents
    # async def _aget_relevant_documents(
    #     self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
    # ) -> List[Document]:
    #     """Asynchronously get documents relevant to a query.
    #     Args:
    #         query: String to find relevant documents for
    #         run_manager: The callbacks handler to use
    #     Returns:
    #         List of relevant documents
    #     """
测试一下 🧪
documents = [
    Document(
        page_content="Dogs are great companions, known for their loyalty and friendliness.",
        metadata={"type": "dog", "trait": "loyalty"},
    ),
    Document(
        page_content="Cats are independent pets that often enjoy their own space.",
        metadata={"type": "cat", "trait": "independence"},
    ),
    Document(
        page_content="Goldfish are popular pets for beginners, requiring relatively simple care.",
        metadata={"type": "fish", "trait": "low maintenance"},
    ),
    Document(
        page_content="Parrots are intelligent birds capable of mimicking human speech.",
        metadata={"type": "bird", "trait": "intelligence"},
    ),
    Document(
        page_content="Rabbits are social animals that need plenty of space to hop around.",
        metadata={"type": "rabbit", "trait": "social"},
    ),
]
retriever = ToyRetriever(documents=documents, k=3)
retriever.invoke("that")
[Document(page_content='Cats are independent pets that often enjoy their own space.', metadata={'type': 'cat', 'trait': 'independence'}),
 Document(page_content='Rabbits are social animals that need plenty of space to hop around.', metadata={'type': 'rabbit', 'trait': 'social'})]
它是一个可运行对象,因此它将受益于标准的 Runnable 接口!🤩
await retriever.ainvoke("that")
[Document(page_content='Cats are independent pets that often enjoy their own space.', metadata={'type': 'cat', 'trait': 'independence'}),
 Document(page_content='Rabbits are social animals that need plenty of space to hop around.', metadata={'type': 'rabbit', 'trait': 'social'})]
retriever.batch(["dog", "cat"])
[[Document(page_content='Dogs are great companions, known for their loyalty and friendliness.', metadata={'type': 'dog', 'trait': 'loyalty'})],
 [Document(page_content='Cats are independent pets that often enjoy their own space.', metadata={'type': 'cat', 'trait': 'independence'})]]
async for event in retriever.astream_events("bar", version="v1"):
    print(event)
{'event': 'on_retriever_start', 'run_id': 'f96f268d-8383-4921-b175-ca583924d9ff', 'name': 'ToyRetriever', 'tags': [], 'metadata': {}, 'data': {'input': 'bar'}}
{'event': 'on_retriever_stream', 'run_id': 'f96f268d-8383-4921-b175-ca583924d9ff', 'tags': [], 'metadata': {}, 'name': 'ToyRetriever', 'data': {'chunk': []}}
{'event': 'on_retriever_end', 'name': 'ToyRetriever', 'run_id': 'f96f268d-8383-4921-b175-ca583924d9ff', 'tags': [], 'metadata': {}, 'data': {'output': []}}
贡献
我们欢迎您贡献有趣的检索器!
以下是一份清单,可帮助确保您的贡献被添加到 LangChain 中
文档
- 检索器包含所有初始化参数的文档字符串,因为这些参数将显示在API 参考中。
- 模型的类文档字符串包含指向检索器所使用的任何相关 API 的链接(例如,如果检索器从维基百科检索,最好链接到维基百科 API!)
测试
-  添加单元测试或集成测试以验证 invoke和ainvoke是否正常工作。
优化
如果检索器连接到外部数据源(例如,API 或文件),它几乎肯定会从原生异步优化中受益!
-  提供 _aget_relevant_documents的原生异步实现(由ainvoke使用)