跳到主要内容
Open In ColabOpen on GitHub

如何为查询分析构建过滤器

我们可能希望进行查询分析,以提取过滤器并将其传递给检索器。一种我们要求LLM表示这些过滤器的方式是使用Pydantic模型。接着,就出现了如何将该Pydantic模型转换为可传递给检索器的过滤器的问题。

这可以手动完成,但LangChain也提供了一些“转换器”(Translators),能够将通用语法转换为每个检索器特定的过滤器。在这里,我们将介绍如何使用这些转换器。

from typing import Optional

from langchain.chains.query_constructor.ir import (
Comparator,
Comparison,
Operation,
Operator,
StructuredQuery,
)
from langchain_community.query_constructors.chroma import ChromaTranslator
from langchain_community.query_constructors.elasticsearch import ElasticsearchTranslator
from pydantic import BaseModel

在此示例中,yearauthor 都是用于过滤的属性。

class Search(BaseModel):
query: str
start_year: Optional[int]
author: Optional[str]
search_query = Search(query="RAG", start_year=2022, author="LangChain")
def construct_comparisons(query: Search):
comparisons = []
if query.start_year is not None:
comparisons.append(
Comparison(
comparator=Comparator.GT,
attribute="start_year",
value=query.start_year,
)
)
if query.author is not None:
comparisons.append(
Comparison(
comparator=Comparator.EQ,
attribute="author",
value=query.author,
)
)
return comparisons
comparisons = construct_comparisons(search_query)
_filter = Operation(operator=Operator.AND, arguments=comparisons)
ElasticsearchTranslator().visit_operation(_filter)
{'bool': {'must': [{'range': {'metadata.start_year': {'gt': 2022}}},
{'term': {'metadata.author.keyword': 'LangChain'}}]}}
ChromaTranslator().visit_operation(_filter)
{'$and': [{'start_year': {'$gt': 2022}}, {'author': {'$eq': 'LangChain'}}]}