跳到主要内容
Open In ColabOpen on GitHub

如何在查询分析时处理高基数分类数据

您可能希望进行查询分析,以便在类别列上创建过滤器。其中一个难点在于,您通常需要指定**精确的**类别值。问题是您需要确保 LLM 精确生成该类别值。当只有少量有效值时,通过提示词可以相对容易地完成此操作。当有效值数量很多时,这会变得更加困难,因为这些值可能不适合 LLM 的上下文,或者(即使适合)LLM 可能有太多内容需要正确处理。

在本笔记本中,我们将探讨如何解决这个问题。

设置

安装依赖

%pip install -qU langchain langchain-community langchain-openai faker langchain-chroma
Note: you may need to restart the kernel to use updated packages.

设置环境变量

在此示例中,我们将使用 OpenAI

import getpass
import os

if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass()

# Optional, uncomment to trace runs with LangSmith. Sign up here: https://smith.langchain.com.
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass()

设置数据

我们将生成一堆虚构的名称。

from faker import Faker

fake = Faker()

names = [fake.name() for _ in range(10000)]

让我们看看其中的一些名称。

names[0]
'Jacob Adams'
names[567]
'Eric Acevedo'

查询分析

我们现在可以设置基线查询分析。

from pydantic import BaseModel, Field, model_validator
class Search(BaseModel):
query: str
author: str
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI

system = """Generate a relevant search query for a library system"""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{question}"),
]
)
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
structured_llm = llm.with_structured_output(Search)
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm

我们可以看到,如果我们准确拼写名称,它知道如何处理。

query_analyzer.invoke("what are books about aliens by Jesse Knight")
Search(query='aliens', author='Jesse Knight')

问题在于,您想要筛选的值可能无法被精确拼写。

query_analyzer.invoke("what are books about aliens by jess knight")
Search(query='aliens', author='Jess Knight')

添加所有值

解决这个问题的一种方法是将**所有**可能的值添加到提示词中。这通常会将查询引导到正确的方向。

system = """Generate a relevant search query for a library system.

`author` attribute MUST be one of:

{authors}

Do NOT hallucinate author name!"""
base_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{question}"),
]
)
prompt = base_prompt.partial(authors=", ".join(names))
query_analyzer_all = {"question": RunnablePassthrough()} | prompt | structured_llm

然而……如果类别列表足够长,它可能会出错!

try:
res = query_analyzer_all.invoke("what are books about aliens by jess knight")
except Exception as e:
print(e)

我们可以尝试使用更长的上下文窗口……但是由于其中包含的信息量太大,无法保证它能够可靠地识别出来。

llm_long = ChatOpenAI(model="gpt-4-turbo-preview", temperature=0)
structured_llm_long = llm_long.with_structured_output(Search)
query_analyzer_all = {"question": RunnablePassthrough()} | prompt | structured_llm_long
query_analyzer_all.invoke("what are books about aliens by jess knight")
Search(query='aliens', author='jess knight')

查找所有相关值

相反,我们可以对相关值创建一个索引,然后查询该索引以获取 N 个最相关的值,

from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Chroma.from_texts(names, embeddings, collection_name="author_names")
API 参考:OpenAIEmbeddings
def select_names(question):
_docs = vectorstore.similarity_search(question, k=10)
_names = [d.page_content for d in _docs]
return ", ".join(_names)
create_prompt = {
"question": RunnablePassthrough(),
"authors": select_names,
} | base_prompt
query_analyzer_select = create_prompt | structured_llm
create_prompt.invoke("what are books by jess knight")
ChatPromptValue(messages=[SystemMessage(content='Generate a relevant search query for a library system.\n\n`author` attribute MUST be one of:\n\nJennifer Knight, Jill Knight, John Knight, Dr. Jeffrey Knight, Christopher Knight, Andrea Knight, Brandy Knight, Jennifer Keller, Becky Chambers, Sarah Knapp\n\nDo NOT hallucinate author name!'), HumanMessage(content='what are books by jess knight')])
query_analyzer_select.invoke("what are books about aliens by jess knight")
Search(query='books about aliens', author='Jennifer Knight')

选取后替换

另一种方法是让 LLM 填写任何值,然后将该值转换为有效值。这实际上可以使用 Pydantic 类本身来完成!

class Search(BaseModel):
query: str
author: str

@model_validator(mode="before")
@classmethod
def double(cls, values: dict) -> dict:
author = values["author"]
closest_valid_author = vectorstore.similarity_search(author, k=1)[
0
].page_content
values["author"] = closest_valid_author
return values
system = """Generate a relevant search query for a library system"""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("human", "{question}"),
]
)
corrective_structure_llm = llm.with_structured_output(Search)
corrective_query_analyzer = (
{"question": RunnablePassthrough()} | prompt | corrective_structure_llm
)
corrective_query_analyzer.invoke("what are books about aliens by jes knight")
Search(query='aliens', author='John Knight')
# TODO: show trigram similarity