如何流式传输可运行对象
本指南假定您熟悉以下概念
流式传输对于使基于 LLM 的应用程序对最终用户感觉响应迅速至关重要。
重要的 LangChain 原语,如 聊天模型、输出解析器、提示、检索器 和 代理 实现了 LangChain Runnable 接口。
此接口提供两种通用的流式传输内容的方法
- 同步
stream
和异步astream
:流式传输的默认实现,用于流式传输来自链的最终输出。 - 异步
astream_events
和异步astream_log
:这些方法提供了一种流式传输来自链的中间步骤和最终输出的方式。
让我们看看这两种方法,并尝试了解如何使用它们。
有关 LangChain 中流式传输技术的更高级概述,请参阅概念指南的此部分。
使用 Stream
所有 Runnable
对象都实现了一个名为 stream
的同步方法和一个名为 astream
的异步变体。
这些方法旨在以块的形式流式传输最终输出,并在每个块可用时立即生成它。
只有当程序中的所有步骤都知道如何处理输入流时,流式传输才有可能;即,一次处理一个输入块,并生成相应的输出块。
此处理的复杂性可能会有所不同,从像发出 LLM 生成的令牌这样的简单任务,到更具挑战性的任务,例如在整个 JSON 完成之前流式传输 JSON 结果的各个部分。
开始探索流式传输的最佳位置是 LLM 应用中最重要的组件——LLM 本身!
LLM 和聊天模型
大型语言模型及其聊天变体是基于 LLM 的应用中的主要瓶颈。
大型语言模型可能需要几秒钟才能生成对查询的完整响应。这比应用程序对最终用户感觉响应迅速的 ~200-300 毫秒阈值慢得多。
使应用程序感觉更具响应性的关键策略是显示中间进度;即,逐个令牌流式传输模型的输出。
我们将展示使用聊天模型进行流式传输的示例。从下面的选项中选择一个
pip install -qU "langchain[openai]"
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain.chat_models import init_chat_model
model = init_chat_model("gpt-4o-mini", model_provider="openai")
让我们从同步 stream
API 开始
chunks = []
for chunk in model.stream("what color is the sky?"):
chunks.append(chunk)
print(chunk.content, end="|", flush=True)
The| sky| appears| blue| during| the| day|.|
或者,如果您在异步环境中工作,您可以考虑使用异步 astream
API
chunks = []
async for chunk in model.astream("what color is the sky?"):
chunks.append(chunk)
print(chunk.content, end="|", flush=True)
The| sky| appears| blue| during| the| day|.|
让我们检查其中一个块
chunks[0]
AIMessageChunk(content='The', id='run-b36bea64-5511-4d7a-b6a3-a07b3db0c8e7')
我们得到了一些名为 AIMessageChunk
的东西。此块表示 AIMessage
的一部分。
消息块在设计上是累加的——只需将它们加起来即可获得到目前为止的响应状态!
chunks[0] + chunks[1] + chunks[2] + chunks[3] + chunks[4]
AIMessageChunk(content='The sky appears blue during', id='run-b36bea64-5511-4d7a-b6a3-a07b3db0c8e7')
链
几乎所有 LLM 应用程序都涉及比仅调用语言模型更多的步骤。
让我们使用 LangChain 表达式语言
(LCEL
) 构建一个简单的链,它结合了提示、模型和解析器,并验证流式传输是否有效。
我们将使用 StrOutputParser
来解析模型的输出。这是一个简单的解析器,它从 AIMessageChunk
中提取 content
字段,从而为我们提供模型返回的 token
。
LCEL 是一种声明式方式,通过链接不同的 LangChain 原语来指定“程序”。使用 LCEL 创建的链受益于 stream
和 astream
的自动实现,从而允许流式传输最终输出。实际上,使用 LCEL 创建的链实现了整个标准 Runnable 接口。
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
parser = StrOutputParser()
chain = prompt | model | parser
async for chunk in chain.astream({"topic": "parrot"}):
print(chunk, end="|", flush=True)
Here|'s| a| joke| about| a| par|rot|:|
A man| goes| to| a| pet| shop| to| buy| a| par|rot|.| The| shop| owner| shows| him| two| stunning| pa|rr|ots| with| beautiful| pl|um|age|.|
"|There|'s| a| talking| par|rot| an|d a| non|-|talking| par|rot|,"| the| owner| says|.| "|The| talking| par|rot| costs| $|100|,| an|d the| non|-|talking| par|rot| is| $|20|."|
The| man| says|,| "|I|'ll| take| the| non|-|talking| par|rot| at| $|20|."|
He| pays| an|d leaves| with| the| par|rot|.| As| he|'s| walking| down| the| street|,| the| par|rot| looks| up| at| him| an|d says|,| "|You| know|,| you| really| are| a| stupi|d man|!"|
The| man| is| stun|ne|d an|d looks| at| the| par|rot| in| dis|bel|ief|.| The| par|rot| continues|,| "|Yes|,| you| got| r|ippe|d off| big| time|!| I| can| talk| just| as| well| as| that| other| par|rot|,| an|d you| only| pai|d $|20| |for| me|!"|
请注意,即使我们在上面的链的末尾使用了 parser
,我们仍然获得了流式输出。 parser
单独处理每个流式块。许多 LCEL 原语 也支持这种转换风格的直通流式传输,这在构建应用程序时非常方便。
自定义函数可以设计为返回生成器,这些生成器能够处理流。
某些可运行对象,例如 提示模板 和 聊天模型,无法处理单个块,而是聚合所有先前的步骤。此类可运行对象可能会中断流式传输过程。
LangChain 表达式语言允许您将链的构造与使用它的模式(例如,同步/异步、批量/流式传输等)分开。如果这与您正在构建的内容无关,您还可以依赖标准的命令式编程方法,通过单独调用每个组件上的 invoke
、batch
或 stream
,将结果分配给变量,然后在下游根据需要使用它们。
使用输入流
如果您想从输出中流式传输 JSON,因为它正在生成,该怎么办?
如果您依赖 json.loads
来解析部分 json,则解析将失败,因为部分 json 不是有效的 json。
您可能会完全不知所措,并声称不可能流式传输 JSON。
好吧,事实证明有一种方法可以做到——解析器需要对输入流进行操作,并尝试将部分 json“自动完成”为有效状态。
让我们看看这样的解析器在操作中的情况,以了解这意味着什么。
from langchain_core.output_parsers import JsonOutputParser
chain = (
model | JsonOutputParser()
) # Due to a bug in older versions of Langchain, JsonOutputParser did not stream results from some models
async for text in chain.astream(
"output a list of the countries france, spain and japan and their populations in JSON format. "
'Use a dict with an outer key of "countries" which contains a list of countries. '
"Each country should have the key `name` and `population`"
):
print(text, flush=True)
{}
{'countries': []}
{'countries': [{}]}
{'countries': [{'name': ''}]}
{'countries': [{'name': 'France'}]}
{'countries': [{'name': 'France', 'population': 67}]}
{'countries': [{'name': 'France', 'population': 67413}]}
{'countries': [{'name': 'France', 'population': 67413000}]}
{'countries': [{'name': 'France', 'population': 67413000}, {}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': ''}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain'}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351567}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351567}, {}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351567}, {'name': ''}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351567}, {'name': 'Japan'}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351567}, {'name': 'Japan', 'population': 125}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351567}, {'name': 'Japan', 'population': 125584}]}
{'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351567}, {'name': 'Japan', 'population': 125584000}]}
现在,让我们打破流式传输。我们将使用之前的示例,并在末尾附加一个提取函数,该函数从最终的 JSON 中提取国家名称。
链中任何对最终输入而不是对输入流进行操作的步骤都可能通过 stream
或 astream
中断流式传输功能。
稍后,我们将讨论 astream_events
API,该 API 流式传输来自中间步骤的结果。即使链包含仅对最终输入进行操作的步骤,此 API 仍将流式传输来自中间步骤的结果。
from langchain_core.output_parsers import (
JsonOutputParser,
)
# A function that operates on finalized inputs
# rather than on an input_stream
def _extract_country_names(inputs):
"""A function that does not operates on input streams and breaks streaming."""
if not isinstance(inputs, dict):
return ""
if "countries" not in inputs:
return ""
countries = inputs["countries"]
if not isinstance(countries, list):
return ""
country_names = [
country.get("name") for country in countries if isinstance(country, dict)
]
return country_names
chain = model | JsonOutputParser() | _extract_country_names
async for text in chain.astream(
"output a list of the countries france, spain and japan and their populations in JSON format. "
'Use a dict with an outer key of "countries" which contains a list of countries. '
"Each country should have the key `name` and `population`"
):
print(text, end="|", flush=True)
['France', 'Spain', 'Japan']|
生成器函数
让我们使用可以对输入流进行操作的生成器函数来修复流式传输。
生成器函数(使用 yield
的函数)允许编写对输入流进行操作的代码
from langchain_core.output_parsers import JsonOutputParser
async def _extract_country_names_streaming(input_stream):
"""A function that operates on input streams."""
country_names_so_far = set()
async for input in input_stream:
if not isinstance(input, dict):
continue
if "countries" not in input:
continue
countries = input["countries"]
if not isinstance(countries, list):
continue
for country in countries:
name = country.get("name")
if not name:
continue
if name not in country_names_so_far:
yield name
country_names_so_far.add(name)
chain = model | JsonOutputParser() | _extract_country_names_streaming
async for text in chain.astream(
"output a list of the countries france, spain and japan and their populations in JSON format. "
'Use a dict with an outer key of "countries" which contains a list of countries. '
"Each country should have the key `name` and `population`",
):
print(text, end="|", flush=True)
France|Spain|Japan|
由于上面的代码依赖于 JSON 自动完成,您可能会看到国家名称的一部分(例如,Sp
和 Spain
),这对于提取结果来说不是人们想要的!
我们专注于流式传输概念,而不一定关注链的结果。
非流式传输组件
某些内置组件(如检索器)不提供任何 streaming
。如果我们尝试 stream
它们会发生什么? 🤨
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import OpenAIEmbeddings
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
vectorstore = FAISS.from_texts(
["harrison worked at kensho", "harrison likes spicy food"],
embedding=OpenAIEmbeddings(),
)
retriever = vectorstore.as_retriever()
chunks = [chunk for chunk in retriever.stream("where did harrison work?")]
chunks
[[Document(page_content='harrison worked at kensho'),
Document(page_content='harrison likes spicy food')]]
Stream 只是生成了该组件的最终结果。
这没问题 🥹!并非所有组件都必须实现流式传输——在某些情况下,流式传输要么是不必要的,要么是困难的,要么只是没有意义。
使用非流式传输组件构建的 LCEL 链,在许多情况下仍然能够流式传输,部分输出的流式传输在链中的最后一个非流式传输步骤之后开始。
retrieval_chain = (
{
"context": retriever.with_config(run_name="Docs"),
"question": RunnablePassthrough(),
}
| prompt
| model
| StrOutputParser()
)
for chunk in retrieval_chain.stream(
"Where did harrison work? " "Write 3 made up sentences about this place."
):
print(chunk, end="|", flush=True)
Base|d on| the| given| context|,| Harrison| worke|d at| K|ens|ho|.|
Here| are| |3| |made| up| sentences| about| this| place|:|
1|.| K|ens|ho| was| a| cutting|-|edge| technology| company| known| for| its| innovative| solutions| in| artificial| intelligence| an|d data| analytics|.|
2|.| The| modern| office| space| at| K|ens|ho| feature|d open| floor| plans|,| collaborative| work|sp|aces|,| an|d a| vib|rant| atmosphere| that| fos|tere|d creativity| an|d team|work|.|
3|.| With| its| prime| location| in| the| heart| of| the| city|,| K|ens|ho| attracte|d top| talent| from| aroun|d the| worl|d,| creating| a| diverse| an|d dynamic| work| environment|.|
现在我们已经了解了 stream
和 astream
的工作原理,让我们冒险进入流式传输事件的世界。 🏞️
使用流事件
事件流式传输是一个 beta API。此 API 可能会根据反馈进行少量更改。
本指南演示了 V2
API,需要 langchain-core >= 0.2。对于与旧版本 LangChain 兼容的 V1
API,请参阅 此处。
import langchain_core
langchain_core.__version__
为了使 astream_events
API 正常工作
- 尽可能在整个代码中使用
async
(例如,异步工具等) - 如果在定义自定义函数/可运行对象时传播回调
- 每当使用没有 LCEL 的可运行对象时,请确保在 LLM 上调用
.astream()
而不是.ainvoke
以强制 LLM 流式传输令牌。 - 如果任何事情没有按预期工作,请告诉我们! :)
事件参考
下面是一个参考表,显示了各种 Runnable 对象可能发出的一些事件。
当流式传输正确实现时,可运行对象的输入将在输入流完全消耗后才可知。这意味着 inputs
通常仅包含在 end
事件中,而不是 start
事件中。
事件 | 名称 | 块 | 输入 | 输出 |
---|---|---|---|---|
on_chat_model_start | [模型名称] | {"messages": [[SystemMessage, HumanMessage]]} | ||
on_chat_model_stream | [模型名称] | AIMessageChunk(content="你好") | ||
on_chat_model_end | [模型名称] | {"messages": [[SystemMessage, HumanMessage]]} | AIMessageChunk(content="你好世界") | |
on_llm_start | [模型名称] | {'input': '你好'} | ||
on_llm_stream | [模型名称] | '你好' | ||
on_llm_end | [模型名称] | '你好,人类!' | ||
on_chain_start | format_docs | |||
on_chain_stream | format_docs | "你好世界!,再见世界!" | ||
on_chain_end | format_docs | [Document(...)] | "你好世界!,再见世界!" | |
on_tool_start | some_tool | {"x": 1, "y": "2"} | ||
on_tool_end | some_tool | {"x": 1, "y": "2"} | ||
on_retriever_start | [检索器名称] | {"query": "你好"} | ||
on_retriever_end | [检索器名称] | {"query": "你好"} | [Document(...), ..] | |
on_prompt_start | [template_name] | {"question": "你好"} | ||
on_prompt_end | [template_name] | {"question": "你好"} | ChatPromptValue(messages: [SystemMessage, ...]) |
聊天模型
让我们首先看看聊天模型生成的事件。
events = []
async for event in model.astream_events("hello"):
events.append(event)
对于 langchain-core<0.3.37
,显式设置 version
kwarg(例如,model.astream_events("hello", version="v2")
)。
让我们看看一些开始事件和一些结束事件。
events[:3]
[{'event': 'on_chat_model_start',
'data': {'input': 'hello'},
'name': 'ChatAnthropic',
'tags': [],
'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',
'metadata': {'ls_provider': 'anthropic',
'ls_model_name': 'claude-3-sonnet-20240229',
'ls_model_type': 'chat',
'ls_temperature': 0.0,
'ls_max_tokens': 1024},
'parent_ids': []},
{'event': 'on_chat_model_stream',
'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',
'name': 'ChatAnthropic',
'tags': [],
'metadata': {'ls_provider': 'anthropic',
'ls_model_name': 'claude-3-sonnet-20240229',
'ls_model_type': 'chat',
'ls_temperature': 0.0,
'ls_max_tokens': 1024},
'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={}, id='run-b18d016d-8b9b-49e7-a555-44db498fcf66', usage_metadata={'input_tokens': 8, 'output_tokens': 4, 'total_tokens': 12, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})},
'parent_ids': []},
{'event': 'on_chat_model_stream',
'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',
'name': 'ChatAnthropic',
'tags': [],
'metadata': {'ls_provider': 'anthropic',
'ls_model_name': 'claude-3-sonnet-20240229',
'ls_model_type': 'chat',
'ls_temperature': 0.0,
'ls_max_tokens': 1024},
'data': {'chunk': AIMessageChunk(content='Hello! How can', additional_kwargs={}, response_metadata={}, id='run-b18d016d-8b9b-49e7-a555-44db498fcf66')},
'parent_ids': []}]
events[-2:]
[{'event': 'on_chat_model_stream',
'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',
'name': 'ChatAnthropic',
'tags': [],
'metadata': {'ls_provider': 'anthropic',
'ls_model_name': 'claude-3-sonnet-20240229',
'ls_model_type': 'chat',
'ls_temperature': 0.0,
'ls_max_tokens': 1024},
'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-b18d016d-8b9b-49e7-a555-44db498fcf66', usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12, 'input_token_details': {}})},
'parent_ids': []},
{'event': 'on_chat_model_end',
'data': {'output': AIMessageChunk(content='Hello! How can I assist you today?', additional_kwargs={}, response_metadata={'stop_reason': 'end_turn', 'stop_sequence': None}, id='run-b18d016d-8b9b-49e7-a555-44db498fcf66', usage_metadata={'input_tokens': 8, 'output_tokens': 16, 'total_tokens': 24, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})},
'run_id': 'b18d016d-8b9b-49e7-a555-44db498fcf66',
'name': 'ChatAnthropic',
'tags': [],
'metadata': {'ls_provider': 'anthropic',
'ls_model_name': 'claude-3-sonnet-20240229',
'ls_model_type': 'chat',
'ls_temperature': 0.0,
'ls_max_tokens': 1024},
'parent_ids': []}]
链
让我们重新审视解析流式 JSON 的示例链,以探索流式事件 API。
chain = (
model | JsonOutputParser()
) # Due to a bug in older versions of Langchain, JsonOutputParser did not stream results from some models
events = [
event
async for event in chain.astream_events(
"output a list of the countries france, spain and japan and their populations in JSON format. "
'Use a dict with an outer key of "countries" which contains a list of countries. '
"Each country should have the key `name` and `population`",
)
]
如果您查看前几个事件,您会注意到有 3 个不同的开始事件,而不是 2 个开始事件。
这三个开始事件对应于
- 链(模型 + 解析器)
- 模型
- 解析器
events[:3]
[{'event': 'on_chain_start',
'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of "countries" which contains a list of countries. Each country should have the key `name` and `population`'},
'name': 'RunnableSequence',
'tags': [],
'run_id': '4765006b-16e2-4b1d-a523-edd9fd64cb92',
'metadata': {}},
{'event': 'on_chat_model_start',
'data': {'input': {'messages': [[HumanMessage(content='output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of "countries" which contains a list of countries. Each country should have the key `name` and `population`')]]}},
'name': 'ChatAnthropic',
'tags': ['seq:step:1'],
'run_id': '0320c234-7b52-4a14-ae4e-5f100949e589',
'metadata': {}},
{'event': 'on_chat_model_stream',
'data': {'chunk': AIMessageChunk(content='{', id='run-0320c234-7b52-4a14-ae4e-5f100949e589')},
'run_id': '0320c234-7b52-4a14-ae4e-5f100949e589',
'name': 'ChatAnthropic',
'tags': ['seq:step:1'],
'metadata': {}}]
您认为如果您查看最后 3 个事件会看到什么?中间呢?
让我们使用此 API 从模型和解析器中输出流事件。我们忽略了开始事件、结束事件和来自链的事件。
num_events = 0
async for event in chain.astream_events(
"output a list of the countries france, spain and japan and their populations in JSON format. "
'Use a dict with an outer key of "countries" which contains a list of countries. '
"Each country should have the key `name` and `population`",
):
kind = event["event"]
if kind == "on_chat_model_stream":
print(
f"Chat model chunk: {repr(event['data']['chunk'].content)}",
flush=True,
)
if kind == "on_parser_stream":
print(f"Parser chunk: {event['data']['chunk']}", flush=True)
num_events += 1
if num_events > 30:
# Truncate the output
print("...")
break
Chat model chunk: ''
Chat model chunk: '{'
Parser chunk: {}
Chat model chunk: '\n "countries'
Chat model chunk: '": [\n '
Parser chunk: {'countries': []}
Chat model chunk: '{\n "'
Parser chunk: {'countries': [{}]}
Chat model chunk: 'name": "France'
Parser chunk: {'countries': [{'name': 'France'}]}
Chat model chunk: '",\n "'
Chat model chunk: 'population": 67'
Parser chunk: {'countries': [{'name': 'France', 'population': 67}]}
Chat model chunk: '413'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413}]}
Chat model chunk: '000\n },'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}]}
Chat model chunk: '\n {'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {}]}
Chat model chunk: '\n "name":'
...
由于模型和解析器都支持流式传输,我们实时看到了来自这两个组件的流式传输事件!有点酷,不是吗? 🦜
过滤事件
由于此 API 生成如此多的事件,因此能够过滤事件非常有用。
您可以按组件 name
、组件 tags
或组件 type
进行过滤。
按名称
chain = model.with_config({"run_name": "model"}) | JsonOutputParser().with_config(
{"run_name": "my_parser"}
)
max_events = 0
async for event in chain.astream_events(
"output a list of the countries france, spain and japan and their populations in JSON format. "
'Use a dict with an outer key of "countries" which contains a list of countries. '
"Each country should have the key `name` and `population`",
include_names=["my_parser"],
):
print(event)
max_events += 1
if max_events > 10:
# Truncate output
print("...")
break
{'event': 'on_parser_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of "countries" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'my_parser', 'tags': ['seq:step:2'], 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'metadata': {}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': []}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France'}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}, {}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain'}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
{'event': 'on_parser_stream', 'run_id': '37ee9e85-481c-415e-863b-c9e132d24948', 'name': 'my_parser', 'tags': ['seq:step:2'], 'metadata': {}, 'data': {'chunk': {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47}]}}, 'parent_ids': ['5a0bc625-09fd-4bdf-9932-54909a9a8c29']}
...
按类型
chain = model.with_config({"run_name": "model"}) | JsonOutputParser().with_config(
{"run_name": "my_parser"}
)
max_events = 0
async for event in chain.astream_events(
'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of "countries" which contains a list of countries. Each country should have the key `name` and `population`',
include_types=["chat_model"],
):
print(event)
max_events += 1
if max_events > 10:
# Truncate output
print("...")
break
{'event': 'on_chat_model_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of "countries" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'model', 'tags': ['seq:step:1'], 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c', usage_metadata={'input_tokens': 56, 'output_tokens': 1, 'total_tokens': 57, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\n "countries', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='": [\n ', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{\n "', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='name": "France', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='",\n "', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='population": 67', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='413', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='000\n },', additional_kwargs={}, response_metadata={}, id='run-156c3e40-82fb-49ff-8e41-9e998061be8c')}, 'run_id': '156c3e40-82fb-49ff-8e41-9e998061be8c', 'name': 'model', 'tags': ['seq:step:1'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['7b927055-bc1b-4b50-a34c-10d3cfcb3899']}
...
按标签
标签由给定 runnable 的子组件继承。
如果您使用标签进行过滤,请确保这是您想要的。
chain = (model | JsonOutputParser()).with_config({"tags": ["my_chain"]})
max_events = 0
async for event in chain.astream_events(
'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of "countries" which contains a list of countries. Each country should have the key `name` and `population`',
include_tags=["my_chain"],
):
print(event)
max_events += 1
if max_events > 10:
# Truncate output
print("...")
break
{'event': 'on_chain_start', 'data': {'input': 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of "countries" which contains a list of countries. Each country should have the key `name` and `population`'}, 'name': 'RunnableSequence', 'tags': ['my_chain'], 'run_id': '58d1302e-36ce-4df7-a3cb-47cb73d57e44', 'metadata': {}, 'parent_ids': []}
{'event': 'on_chat_model_start', 'data': {'input': {'messages': [[HumanMessage(content='output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer key of "countries" which contains a list of countries. Each country should have the key `name` and `population`', additional_kwargs={}, response_metadata={})]]}}, 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='', additional_kwargs={}, response_metadata={}, id='run-8222e8a1-d978-4f30-87fc-b2dba838774b', usage_metadata={'input_tokens': 56, 'output_tokens': 1, 'total_tokens': 57, 'input_token_details': {'cache_creation': 0, 'cache_read': 0}})}, 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}
{'event': 'on_parser_start', 'data': {}, 'name': 'JsonOutputParser', 'tags': ['seq:step:2', 'my_chain'], 'run_id': '75604c84-e1e6-494a-8b2a-950f45d932e8', 'metadata': {}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='{', additional_kwargs={}, response_metadata={}, id='run-8222e8a1-d978-4f30-87fc-b2dba838774b')}, 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}
{'event': 'on_parser_stream', 'run_id': '75604c84-e1e6-494a-8b2a-950f45d932e8', 'name': 'JsonOutputParser', 'tags': ['seq:step:2', 'my_chain'], 'metadata': {}, 'data': {'chunk': {}}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}
{'event': 'on_chain_stream', 'run_id': '58d1302e-36ce-4df7-a3cb-47cb73d57e44', 'name': 'RunnableSequence', 'tags': ['my_chain'], 'metadata': {}, 'data': {'chunk': {}}, 'parent_ids': []}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='\n "countries', additional_kwargs={}, response_metadata={}, id='run-8222e8a1-d978-4f30-87fc-b2dba838774b')}, 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='": [\n ', additional_kwargs={}, response_metadata={}, id='run-8222e8a1-d978-4f30-87fc-b2dba838774b')}, 'run_id': '8222e8a1-d978-4f30-87fc-b2dba838774b', 'name': 'ChatAnthropic', 'tags': ['seq:step:1', 'my_chain'], 'metadata': {'ls_provider': 'anthropic', 'ls_model_name': 'claude-3-sonnet-20240229', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 1024}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}
{'event': 'on_parser_stream', 'run_id': '75604c84-e1e6-494a-8b2a-950f45d932e8', 'name': 'JsonOutputParser', 'tags': ['seq:step:2', 'my_chain'], 'metadata': {}, 'data': {'chunk': {'countries': []}}, 'parent_ids': ['58d1302e-36ce-4df7-a3cb-47cb73d57e44']}
{'event': 'on_chain_stream', 'run_id': '58d1302e-36ce-4df7-a3cb-47cb73d57e44', 'name': 'RunnableSequence', 'tags': ['my_chain'], 'metadata': {}, 'data': {'chunk': {'countries': []}}, 'parent_ids': []}
...
非流式传输组件
还记得某些组件由于不对输入流进行操作而无法很好地流式传输吗?
虽然此类组件在使用 astream
时可能会中断最终输出的流式传输,但 astream_events
仍将从支持流式传输的中间步骤生成流式传输事件!
# Function that does not support streaming.
# It operates on the finalizes inputs rather than
# operating on the input stream.
def _extract_country_names(inputs):
"""A function that does not operates on input streams and breaks streaming."""
if not isinstance(inputs, dict):
return ""
if "countries" not in inputs:
return ""
countries = inputs["countries"]
if not isinstance(countries, list):
return ""
country_names = [
country.get("name") for country in countries if isinstance(country, dict)
]
return country_names
chain = (
model | JsonOutputParser() | _extract_country_names
) # This parser only works with OpenAI right now
正如预期的那样,astream
API 无法正常工作,因为 _extract_country_names
不对流进行操作。
async for chunk in chain.astream(
"output a list of the countries france, spain and japan and their populations in JSON format. "
'Use a dict with an outer key of "countries" which contains a list of countries. '
"Each country should have the key `name` and `population`",
):
print(chunk, flush=True)
['France', 'Spain', 'Japan']
现在,让我们确认使用 astream_events,我们仍然可以看到来自模型和解析器的流式传输输出。
num_events = 0
async for event in chain.astream_events(
"output a list of the countries france, spain and japan and their populations in JSON format. "
'Use a dict with an outer key of "countries" which contains a list of countries. '
"Each country should have the key `name` and `population`",
):
kind = event["event"]
if kind == "on_chat_model_stream":
print(
f"Chat model chunk: {repr(event['data']['chunk'].content)}",
flush=True,
)
if kind == "on_parser_stream":
print(f"Parser chunk: {event['data']['chunk']}", flush=True)
num_events += 1
if num_events > 30:
# Truncate the output
print("...")
break
Chat model chunk: ''
Chat model chunk: '{'
Parser chunk: {}
Chat model chunk: '\n "countries'
Chat model chunk: '": [\n '
Parser chunk: {'countries': []}
Chat model chunk: '{\n "'
Parser chunk: {'countries': [{}]}
Chat model chunk: 'name": "France'
Parser chunk: {'countries': [{'name': 'France'}]}
Chat model chunk: '",\n "'
Chat model chunk: 'population": 67'
Parser chunk: {'countries': [{'name': 'France', 'population': 67}]}
Chat model chunk: '413'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413}]}
Chat model chunk: '000\n },'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}]}
Chat model chunk: '\n {'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {}]}
Chat model chunk: '\n "name":'
Chat model chunk: ' "Spain",'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain'}]}
Chat model chunk: '\n "population":'
Chat model chunk: ' 47'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47}]}
Chat model chunk: '351'
Parser chunk: {'countries': [{'name': 'France', 'population': 67413000}, {'name': 'Spain', 'population': 47351}]}
...
传播回调
如果您在工具中使用调用可运行对象,则需要将回调传播到可运行对象;否则,将不会生成任何流事件。
当使用 RunnableLambdas
或 @chain
装饰器时,回调会在幕后自动传播。
from langchain_core.runnables import RunnableLambda
from langchain_core.tools import tool
def reverse_word(word: str):
return word[::-1]
reverse_word = RunnableLambda(reverse_word)
@tool
def bad_tool(word: str):
"""Custom tool that doesn't propagate callbacks."""
return reverse_word.invoke(word)
async for event in bad_tool.astream_events("hello"):
print(event)
{'event': 'on_tool_start', 'data': {'input': 'hello'}, 'name': 'bad_tool', 'tags': [], 'run_id': 'ea900472-a8f7-425d-b627-facdef936ee8', 'metadata': {}}
{'event': 'on_chain_start', 'data': {'input': 'hello'}, 'name': 'reverse_word', 'tags': [], 'run_id': '77b01284-0515-48f4-8d7c-eb27c1882f86', 'metadata': {}}
{'event': 'on_chain_end', 'data': {'output': 'olleh', 'input': 'hello'}, 'run_id': '77b01284-0515-48f4-8d7c-eb27c1882f86', 'name': 'reverse_word', 'tags': [], 'metadata': {}}
{'event': 'on_tool_end', 'data': {'output': 'olleh'}, 'run_id': 'ea900472-a8f7-425d-b627-facdef936ee8', 'name': 'bad_tool', 'tags': [], 'metadata': {}}
这是一个正确传播回调的重新实现。您会注意到,现在我们也从 reverse_word
可运行对象中获取事件。
@tool
def correct_tool(word: str, callbacks):
"""A tool that correctly propagates callbacks."""
return reverse_word.invoke(word, {"callbacks": callbacks})
async for event in correct_tool.astream_events("hello"):
print(event)
{'event': 'on_tool_start', 'data': {'input': 'hello'}, 'name': 'correct_tool', 'tags': [], 'run_id': 'd5ea83b9-9278-49cc-9f1d-aa302d671040', 'metadata': {}}
{'event': 'on_chain_start', 'data': {'input': 'hello'}, 'name': 'reverse_word', 'tags': [], 'run_id': '44dafbf4-2f87-412b-ae0e-9f71713810df', 'metadata': {}}
{'event': 'on_chain_end', 'data': {'output': 'olleh', 'input': 'hello'}, 'run_id': '44dafbf4-2f87-412b-ae0e-9f71713810df', 'name': 'reverse_word', 'tags': [], 'metadata': {}}
{'event': 'on_tool_end', 'data': {'output': 'olleh'}, 'run_id': 'd5ea83b9-9278-49cc-9f1d-aa302d671040', 'name': 'correct_tool', 'tags': [], 'metadata': {}}
如果您从 Runnable Lambdas 或 @chains
中调用可运行对象,则回调将代表您自动传递。
from langchain_core.runnables import RunnableLambda
async def reverse_and_double(word: str):
return await reverse_word.ainvoke(word) * 2
reverse_and_double = RunnableLambda(reverse_and_double)
await reverse_and_double.ainvoke("1234")
async for event in reverse_and_double.astream_events("1234"):
print(event)
{'event': 'on_chain_start', 'data': {'input': '1234'}, 'name': 'reverse_and_double', 'tags': [], 'run_id': '03b0e6a1-3e60-42fc-8373-1e7829198d80', 'metadata': {}}
{'event': 'on_chain_start', 'data': {'input': '1234'}, 'name': 'reverse_word', 'tags': [], 'run_id': '5cf26fc8-840b-4642-98ed-623dda28707a', 'metadata': {}}
{'event': 'on_chain_end', 'data': {'output': '4321', 'input': '1234'}, 'run_id': '5cf26fc8-840b-4642-98ed-623dda28707a', 'name': 'reverse_word', 'tags': [], 'metadata': {}}
{'event': 'on_chain_stream', 'data': {'chunk': '43214321'}, 'run_id': '03b0e6a1-3e60-42fc-8373-1e7829198d80', 'name': 'reverse_and_double', 'tags': [], 'metadata': {}}
{'event': 'on_chain_end', 'data': {'output': '43214321'}, 'run_id': '03b0e6a1-3e60-42fc-8373-1e7829198d80', 'name': 'reverse_and_double', 'tags': [], 'metadata': {}}
使用 @chain
装饰器
from langchain_core.runnables import chain
@chain
async def reverse_and_double(word: str):
return await reverse_word.ainvoke(word) * 2
await reverse_and_double.ainvoke("1234")
async for event in reverse_and_double.astream_events("1234"):
print(event)
{'event': 'on_chain_start', 'data': {'input': '1234'}, 'name': 'reverse_and_double', 'tags': [], 'run_id': '1bfcaedc-f4aa-4d8e-beee-9bba6ef17008', 'metadata': {}}
{'event': 'on_chain_start', 'data': {'input': '1234'}, 'name': 'reverse_word', 'tags': [], 'run_id': '64fc99f0-5d7d-442b-b4f5-4537129f67d1', 'metadata': {}}
{'event': 'on_chain_end', 'data': {'output': '4321', 'input': '1234'}, 'run_id': '64fc99f0-5d7d-442b-b4f5-4537129f67d1', 'name': 'reverse_word', 'tags': [], 'metadata': {}}
{'event': 'on_chain_stream', 'data': {'chunk': '43214321'}, 'run_id': '1bfcaedc-f4aa-4d8e-beee-9bba6ef17008', 'name': 'reverse_and_double', 'tags': [], 'metadata': {}}
{'event': 'on_chain_end', 'data': {'output': '43214321'}, 'run_id': '1bfcaedc-f4aa-4d8e-beee-9bba6ef17008', 'name': 'reverse_and_double', 'tags': [], 'metadata': {}}
下一步
现在您已经学习了一些使用 LangChain 流式传输最终输出和内部步骤的方法。
要了解更多信息,请查看本节中的其他操作指南,或 Langchain 表达式语言的概念指南。