如何从模型返回结构化数据
通常,让模型返回与特定 schema 匹配的输出非常有用。一种常见的用例是从文本中提取数据,以插入到数据库或用于其他下游系统。本指南涵盖了从模型获取结构化输出的几种策略。
.with_structured_output()
方法
您可以在此处找到支持此方法的模型列表。
这是获取结构化输出最简单、最可靠的方法。with_structured_output()
是为 提供用于构建输出的本机 API 的模型实现的,例如工具/函数调用或 JSON 模式,并在幕后使用这些功能。
此方法接受一个 schema 作为输入,该 schema 指定所需输出属性的名称、类型和描述。该方法返回一个类似模型的 Runnable,但它输出的不是字符串或 消息,而是与给定 schema 相对应的对象。schema 可以指定为 TypedDict 类、JSON Schema 或 Pydantic 类。如果使用 TypedDict 或 JSON Schema,则 Runnable 将返回字典;如果使用 Pydantic 类,则将返回 Pydantic 对象。
例如,让我们让模型生成一个笑话,并将铺垫与笑点分开
pip install -qU "langchain[openai]"
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain.chat_models import init_chat_model
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
Pydantic 类
如果我们希望模型返回 Pydantic 对象,我们只需要传入所需的 Pydantic 类。使用 Pydantic 的主要优势在于,模型生成的输出将得到验证。如果缺少任何必需字段或任何字段类型错误,Pydantic 将引发错误。
from typing import Optional
from pydantic import BaseModel, Field
# Pydantic
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(
default=None, description="How funny the joke is, from 1 to 10"
)
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
Joke(setup='Why was the cat sitting on the computer?', punchline='Because it wanted to keep an eye on the mouse!', rating=7)
除了 Pydantic 类的结构之外,Pydantic 类的名称、文档字符串以及参数的名称和提供的描述都非常重要。大多数情况下,with_structured_output
使用模型的函数/工具调用 API,您可以有效地将所有这些信息视为添加到模型提示中。
TypedDict 或 JSON Schema
如果您不想使用 Pydantic,明确不希望验证参数,或者希望能够流式传输模型输出,则可以使用 TypedDict 类定义您的 schema。我们可以选择使用 LangChain 支持的特殊 Annotated
语法,该语法允许您指定字段的默认值和描述。请注意,如果模型未生成默认值,则不会自动填充默认值,它仅用于定义传递给模型的 schema。
- 核心:
langchain-core>=0.2.26
- 类型扩展:强烈建议从
typing_extensions
而不是typing
导入Annotated
和TypedDict
,以确保在不同 Python 版本中行为一致。
from typing import Optional
from typing_extensions import Annotated, TypedDict
# TypedDict
class Joke(TypedDict):
"""Joke to tell user."""
setup: Annotated[str, ..., "The setup of the joke"]
# Alternatively, we could have specified setup as:
# setup: str # no default, no description
# setup: Annotated[str, ...] # no default, no description
# setup: Annotated[str, "foo"] # default, no description
punchline: Annotated[str, ..., "The punchline of the joke"]
rating: Annotated[Optional[int], None, "How funny the joke is, from 1 to 10"]
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
{'setup': 'Why was the cat sitting on the computer?',
'punchline': 'Because it wanted to keep an eye on the mouse!',
'rating': 7}
等效地,我们可以传入 JSON Schema 字典。这不需要导入或类,并且可以非常清楚地了解每个参数的文档记录方式,但代价是有点冗长。
json_schema = {
"title": "joke",
"description": "Joke to tell user.",
"type": "object",
"properties": {
"setup": {
"type": "string",
"description": "The setup of the joke",
},
"punchline": {
"type": "string",
"description": "The punchline to the joke",
},
"rating": {
"type": "integer",
"description": "How funny the joke is, from 1 to 10",
"default": None,
},
},
"required": ["setup", "punchline"],
}
structured_llm = llm.with_structured_output(json_schema)
structured_llm.invoke("Tell me a joke about cats")
{'setup': 'Why was the cat sitting on the computer?',
'punchline': 'Because it wanted to keep an eye on the mouse!',
'rating': 7}
在多个 schema 之间选择
让模型从多个 schema 中选择的最简单方法是创建一个具有 Union 类型属性的父 schema。
使用 Pydantic
from typing import Union
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(
default=None, description="How funny the joke is, from 1 to 10"
)
class ConversationalResponse(BaseModel):
"""Respond in a conversational manner. Be kind and helpful."""
response: str = Field(description="A conversational response to the user's query")
class FinalResponse(BaseModel):
final_output: Union[Joke, ConversationalResponse]
structured_llm = llm.with_structured_output(FinalResponse)
structured_llm.invoke("Tell me a joke about cats")
FinalResponse(final_output=Joke(setup='Why was the cat sitting on the computer?', punchline='Because it wanted to keep an eye on the mouse!', rating=7))
structured_llm.invoke("How are you today?")
FinalResponse(final_output=ConversationalResponse(response="I'm just a computer program, so I don't have feelings, but I'm here and ready to help you with whatever you need!"))
使用 TypedDict
from typing import Optional, Union
from typing_extensions import Annotated, TypedDict
class Joke(TypedDict):
"""Joke to tell user."""
setup: Annotated[str, ..., "The setup of the joke"]
punchline: Annotated[str, ..., "The punchline of the joke"]
rating: Annotated[Optional[int], None, "How funny the joke is, from 1 to 10"]
class ConversationalResponse(TypedDict):
"""Respond in a conversational manner. Be kind and helpful."""
response: Annotated[str, ..., "A conversational response to the user's query"]
class FinalResponse(TypedDict):
final_output: Union[Joke, ConversationalResponse]
structured_llm = llm.with_structured_output(FinalResponse)
structured_llm.invoke("Tell me a joke about cats")
{'final_output': {'setup': 'Why was the cat sitting on the computer?',
'punchline': 'Because it wanted to keep an eye on the mouse!',
'rating': 7}}
structured_llm.invoke("How are you today?")
{'final_output': {'response': "I'm just a computer program, so I don't have feelings, but I'm here and ready to help you with whatever you need!"}}
响应应与 Pydantic 示例中显示的响应相同。
或者,您可以直接使用工具调用来允许模型在选项之间进行选择,前提是您的所选模型支持它。这需要更多的解析和设置,但在某些情况下可以带来更好的性能,因为您不必使用嵌套 schema。有关更多详细信息,请参阅本操作指南。
流式传输
当输出类型为字典时(即,当 schema 指定为 TypedDict 类或 JSON Schema 字典时),我们可以从结构化模型流式传输输出。
请注意,产生的是已聚合的块,而不是 delta。
from typing_extensions import Annotated, TypedDict
# TypedDict
class Joke(TypedDict):
"""Joke to tell user."""
setup: Annotated[str, ..., "The setup of the joke"]
punchline: Annotated[str, ..., "The punchline of the joke"]
rating: Annotated[Optional[int], None, "How funny the joke is, from 1 to 10"]
structured_llm = llm.with_structured_output(Joke)
for chunk in structured_llm.stream("Tell me a joke about cats"):
print(chunk)
{}
{'setup': ''}
{'setup': 'Why'}
{'setup': 'Why was'}
{'setup': 'Why was the'}
{'setup': 'Why was the cat'}
{'setup': 'Why was the cat sitting'}
{'setup': 'Why was the cat sitting on'}
{'setup': 'Why was the cat sitting on the'}
{'setup': 'Why was the cat sitting on the computer'}
{'setup': 'Why was the cat sitting on the computer?'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': ''}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!', 'rating': 7}
少量提示
对于更复杂的 schema,向提示添加少量示例非常有用。这可以通过几种方式完成。
最简单、最通用的方法是将示例添加到提示中的系统消息中
from langchain_core.prompts import ChatPromptTemplate
system = """You are a hilarious comedian. Your specialty is knock-knock jokes. \
Return a joke which has the setup (the response to "Who's there?") and the final punchline (the response to "<setup> who?").
Here are some examples of jokes:
example_user: Tell me a joke about planes
example_assistant: {{"setup": "Why don't planes ever get tired?", "punchline": "Because they have rest wings!", "rating": 2}}
example_user: Tell me another joke about planes
example_assistant: {{"setup": "Cargo", "punchline": "Cargo 'vroom vroom', but planes go 'zoom zoom'!", "rating": 10}}
example_user: Now about caterpillars
example_assistant: {{"setup": "Caterpillar", "punchline": "Caterpillar really slow, but watch me turn into a butterfly and steal the show!", "rating": 5}}"""
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{input}")])
few_shot_structured_llm = prompt | structured_llm
few_shot_structured_llm.invoke("what's something funny about woodpeckers")
{'setup': 'Woodpecker',
'punchline': "Woodpecker you a joke, but I'm afraid it might be too 'hole-some'!",
'rating': 7}
当结构化输出的底层方法是工具调用时,我们可以将示例作为显式工具调用传入。您可以检查您使用的模型是否在其 API 参考中使用了工具调用。
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
examples = [
HumanMessage("Tell me a joke about planes", name="example_user"),
AIMessage(
"",
name="example_assistant",
tool_calls=[
{
"name": "joke",
"args": {
"setup": "Why don't planes ever get tired?",
"punchline": "Because they have rest wings!",
"rating": 2,
},
"id": "1",
}
],
),
# Most tool-calling models expect a ToolMessage(s) to follow an AIMessage with tool calls.
ToolMessage("", tool_call_id="1"),
# Some models also expect an AIMessage to follow any ToolMessages,
# so you may need to add an AIMessage here.
HumanMessage("Tell me another joke about planes", name="example_user"),
AIMessage(
"",
name="example_assistant",
tool_calls=[
{
"name": "joke",
"args": {
"setup": "Cargo",
"punchline": "Cargo 'vroom vroom', but planes go 'zoom zoom'!",
"rating": 10,
},
"id": "2",
}
],
),
ToolMessage("", tool_call_id="2"),
HumanMessage("Now about caterpillars", name="example_user"),
AIMessage(
"",
tool_calls=[
{
"name": "joke",
"args": {
"setup": "Caterpillar",
"punchline": "Caterpillar really slow, but watch me turn into a butterfly and steal the show!",
"rating": 5,
},
"id": "3",
}
],
),
ToolMessage("", tool_call_id="3"),
]
system = """You are a hilarious comedian. Your specialty is knock-knock jokes. \
Return a joke which has the setup (the response to "Who's there?") \
and the final punchline (the response to "<setup> who?")."""
prompt = ChatPromptTemplate.from_messages(
[("system", system), ("placeholder", "{examples}"), ("human", "{input}")]
)
few_shot_structured_llm = prompt | structured_llm
few_shot_structured_llm.invoke({"input": "crocodiles", "examples": examples})
{'setup': 'Crocodile',
'punchline': 'Crocodile be seeing you later, alligator!',
'rating': 6}
有关使用工具调用时进行少量提示的更多信息,请参阅此处。
(高级)指定结构化输出的方法
对于支持多种结构化输出方式的模型(即,它们同时支持工具调用和 JSON 模式),您可以使用 method=
参数指定要使用的方法。
如果使用 JSON 模式,您仍然需要在模型提示中指定所需的 schema。您传递给 with_structured_output
的 schema 仅用于解析模型输出,它不会像工具调用那样传递给模型。
要查看您使用的模型是否支持 JSON 模式,请查看 API 参考中的条目。
structured_llm = llm.with_structured_output(None, method="json_mode")
structured_llm.invoke(
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
)
{'setup': 'Why was the cat sitting on the computer?',
'punchline': 'Because it wanted to keep an eye on the mouse!'}
(高级)原始输出
LLM 在生成结构化输出方面并非完美,尤其是在 schema 变得复杂时。您可以通过传递 include_raw=True
来避免引发异常并自行处理原始输出。这会将输出格式更改为包含原始消息输出、parsed
值(如果成功)以及任何生成的错误
structured_llm = llm.with_structured_output(Joke, include_raw=True)
structured_llm.invoke("Tell me a joke about cats")
{'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_f25ZRmh8u5vHlOWfTUw8sJFZ', 'function': {'arguments': '{"setup":"Why was the cat sitting on the computer?","punchline":"Because it wanted to keep an eye on the mouse!","rating":7}', 'name': 'Joke'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 33, 'prompt_tokens': 93, 'total_tokens': 126}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_4e2b2da518', 'finish_reason': 'stop', 'logprobs': None}, id='run-d880d7e2-df08-4e9e-ad92-dfc29f2fd52f-0', tool_calls=[{'name': 'Joke', 'args': {'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!', 'rating': 7}, 'id': 'call_f25ZRmh8u5vHlOWfTUw8sJFZ', 'type': 'tool_call'}], usage_metadata={'input_tokens': 93, 'output_tokens': 33, 'total_tokens': 126}),
'parsed': {'setup': 'Why was the cat sitting on the computer?',
'punchline': 'Because it wanted to keep an eye on the mouse!',
'rating': 7},
'parsing_error': None}
直接提示和解析模型输出
并非所有模型都支持 .with_structured_output()
,因为并非所有模型都支持工具调用或 JSON 模式。对于此类模型,您需要直接提示模型使用特定格式,并使用输出解析器从原始模型输出中提取结构化响应。
使用 PydanticOutputParser
以下示例使用内置的 PydanticOutputParser
来解析聊天模型的输出,该模型被提示以匹配给定的 Pydantic schema。请注意,我们正在从解析器的方法中直接向提示添加 format_instructions
from typing import List
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel, Field
class Person(BaseModel):
"""Information about a person."""
name: str = Field(..., description="The name of the person")
height_in_meters: float = Field(
..., description="The height of the person expressed in meters."
)
class People(BaseModel):
"""Identifying information about all people in a text."""
people: List[Person]
# Set up a parser
parser = PydanticOutputParser(pydantic_object=People)
# Prompt
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Answer the user query. Wrap the output in `json` tags\n{format_instructions}",
),
("human", "{query}"),
]
).partial(format_instructions=parser.get_format_instructions())
让我们看一下发送到模型的信息
query = "Anna is 23 years old and she is 6 feet tall"
print(prompt.invoke({"query": query}).to_string())
System: Answer the user query. Wrap the output in `json` tags
The output should be formatted as a JSON instance that conforms to the JSON schema below.
As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.
Here is the output schema:
\`\`\`
{"description": "Identifying information about all people in a text.", "properties": {"people": {"title": "People", "type": "array", "items": {"$ref": "#/definitions/Person"}}}, "required": ["people"], "definitions": {"Person": {"title": "Person", "description": "Information about a person.", "type": "object", "properties": {"name": {"title": "Name", "description": "The name of the person", "type": "string"}, "height_in_meters": {"title": "Height In Meters", "description": "The height of the person expressed in meters.", "type": "number"}}, "required": ["name", "height_in_meters"]}}}
\`\`\`
Human: Anna is 23 years old and she is 6 feet tall
现在让我们调用它
chain = prompt | llm | parser
chain.invoke({"query": query})
People(people=[Person(name='Anna', height_in_meters=1.8288)])
有关将输出解析器与提示技术结合使用以获得结构化输出的更深入探讨,请参阅本指南。
自定义解析
您还可以使用 LangChain 表达式语言 (LCEL) 创建自定义提示和解析器,使用纯函数来解析模型的输出
import json
import re
from typing import List
from langchain_core.messages import AIMessage
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel, Field
class Person(BaseModel):
"""Information about a person."""
name: str = Field(..., description="The name of the person")
height_in_meters: float = Field(
..., description="The height of the person expressed in meters."
)
class People(BaseModel):
"""Identifying information about all people in a text."""
people: List[Person]
# Prompt
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Answer the user query. Output your answer as JSON that "
"matches the given schema: \`\`\`json\n{schema}\n\`\`\`. "
"Make sure to wrap the answer in \`\`\`json and \`\`\` tags",
),
("human", "{query}"),
]
).partial(schema=People.schema())
# Custom parser
def extract_json(message: AIMessage) -> List[dict]:
"""Extracts JSON content from a string where JSON is embedded between \`\`\`json and \`\`\` tags.
Parameters:
text (str): The text containing the JSON content.
Returns:
list: A list of extracted JSON strings.
"""
text = message.content
# Define the regular expression pattern to match JSON blocks
pattern = r"\`\`\`json(.*?)\`\`\`"
# Find all non-overlapping matches of the pattern in the string
matches = re.findall(pattern, text, re.DOTALL)
# Return the list of matched JSON strings, stripping any leading or trailing whitespace
try:
return [json.loads(match.strip()) for match in matches]
except Exception:
raise ValueError(f"Failed to parse: {message}")
这是发送到模型的提示
query = "Anna is 23 years old and she is 6 feet tall"
print(prompt.format_prompt(query=query).to_string())
System: Answer the user query. Output your answer as JSON that matches the given schema: \`\`\`json
{'title': 'People', 'description': 'Identifying information about all people in a text.', 'type': 'object', 'properties': {'people': {'title': 'People', 'type': 'array', 'items': {'$ref': '#/definitions/Person'}}}, 'required': ['people'], 'definitions': {'Person': {'title': 'Person', 'description': 'Information about a person.', 'type': 'object', 'properties': {'name': {'title': 'Name', 'description': 'The name of the person', 'type': 'string'}, 'height_in_meters': {'title': 'Height In Meters', 'description': 'The height of the person expressed in meters.', 'type': 'number'}}, 'required': ['name', 'height_in_meters']}}}
\`\`\`. Make sure to wrap the answer in \`\`\`json and \`\`\` tags
Human: Anna is 23 years old and she is 6 feet tall
这是我们调用它时的样子
chain = prompt | llm | extract_json
chain.invoke({"query": query})
[{'people': [{'name': 'Anna', 'height_in_meters': 1.8288}]}]