跳到主要内容
Open In ColabOpen on GitHub

ChatAnthropic

本笔记本提供 Anthropic 聊天模型 入门的快速概述。有关所有 ChatAnthropic 功能和配置的详细文档,请访问 API 参考

Anthropic 有几个聊天模型。您可以在 Anthropic 文档中找到关于其最新模型及其成本、上下文窗口和支持的输入类型的信息。

AWS Bedrock 和 Google VertexAI

请注意,某些 Anthropic 模型也可以通过 AWS Bedrock 和 Google VertexAI 访问。请参阅 ChatBedrockChatVertexAI 集成,以通过这些服务使用 Anthropic 模型。

概述

集成详情

本地可序列化JS 支持包下载量包最新版本
ChatAnthropiclangchain-anthropicbetaPyPI - DownloadsPyPI - Version

模型功能

工具调用结构化输出JSON 模式图像输入音频输入视频输入令牌级流式传输原生异步令牌使用量Logprobs

设置

要访问 Anthropic 模型,您需要创建一个 Anthropic 帐户,获取 API 密钥,并安装 langchain-anthropic 集成包。

凭据

前往 https://console.anthropic.com/ 注册 Anthropic 并生成 API 密钥。完成后,设置 ANTHROPIC_API_KEY 环境变量

import getpass
import os

if "ANTHROPIC_API_KEY" not in os.environ:
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass("Enter your Anthropic API key: ")

如果您希望自动跟踪您的模型调用,您还可以通过取消注释下方代码来设置您的 LangSmith API 密钥

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

安装

LangChain Anthropic 集成位于 langchain-anthropic 包中

%pip install -qU langchain-anthropic
本指南需要 langchain-anthropic>=0.3.10

实例化

现在我们可以实例化我们的模型对象并生成聊天补全

from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(
model="claude-3-5-sonnet-20240620",
temperature=0,
max_tokens=1024,
timeout=None,
max_retries=2,
# other params...
)
API 参考:ChatAnthropic

调用

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", response_metadata={'id': 'msg_018Nnu76krRPq8HvgKLW4F8T', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 29, 'output_tokens': 11}}, id='run-57e9295f-db8a-48dc-9619-babd2bedd891-0', usage_metadata={'input_tokens': 29, 'output_tokens': 11, 'total_tokens': 40})
print(ai_msg.content)
J'adore la programmation.

链式调用

我们可以像这样使用提示模板链式调用我们的模型

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content="Here's the German translation:\n\nIch liebe Programmieren.", response_metadata={'id': 'msg_01GhkRtQZUkA5Ge9hqmD8HGY', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 23, 'output_tokens': 18}}, id='run-da5906b4-b200-4e08-b81a-64d4453643b6-0', usage_metadata={'input_tokens': 23, 'output_tokens': 18, 'total_tokens': 41})

内容块

来自单个 Anthropic AI 消息的内容可以是单个字符串或内容块列表。例如,当 Anthropic 模型调用工具时,工具调用是消息内容的一部分(以及在标准化的 AIMessage.tool_calls 中公开)

from pydantic import BaseModel, Field


class GetWeather(BaseModel):
"""Get the current weather in a given location"""

location: str = Field(..., description="The city and state, e.g. San Francisco, CA")


llm_with_tools = llm.bind_tools([GetWeather])
ai_msg = llm_with_tools.invoke("Which city is hotter today: LA or NY?")
ai_msg.content
[{'text': "To answer this question, we'll need to check the current weather in both Los Angeles (LA) and New York (NY). I'll use the GetWeather function to retrieve this information for both cities.",
'type': 'text'},
{'id': 'toolu_01Ddzj5PkuZkrjF4tafzu54A',
'input': {'location': 'Los Angeles, CA'},
'name': 'GetWeather',
'type': 'tool_use'},
{'id': 'toolu_012kz4qHZQqD4qg8sFPeKqpP',
'input': {'location': 'New York, NY'},
'name': 'GetWeather',
'type': 'tool_use'}]
ai_msg.tool_calls
[{'name': 'GetWeather',
'args': {'location': 'Los Angeles, CA'},
'id': 'toolu_01Ddzj5PkuZkrjF4tafzu54A'},
{'name': 'GetWeather',
'args': {'location': 'New York, NY'},
'id': 'toolu_012kz4qHZQqD4qg8sFPeKqpP'}]

扩展思考

Claude 3.7 Sonnet 支持 扩展思考 功能,该功能将输出导致其最终答案的逐步推理过程。

要使用它,请在初始化 ChatAnthropic 时指定 thinking 参数。它也可以在调用期间作为 kwarg 传入。

您需要指定令牌预算才能使用此功能。请参阅下面的用法示例

import json

from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(
model="claude-3-7-sonnet-latest",
max_tokens=5000,
thinking={"type": "enabled", "budget_tokens": 2000},
)

response = llm.invoke("What is the cube root of 50.653?")
print(json.dumps(response.content, indent=2))
API 参考:ChatAnthropic
[
{
"signature": "ErUBCkYIARgCIkCx7bIPj35jGPHpoVOB2y5hvPF8MN4lVK75CYGftmVNlI4axz2+bBbSexofWsN1O/prwNv8yPXnIXQmwT6zrJsKEgwJzvks0yVRZtaGBScaDOm9xcpOxbuhku1zViIw9WDgil/KZL8DsqWrhVpC6TzM0RQNCcsHcmgmyxbgG9g8PR0eJGLxCcGoEw8zMQu1Kh1hQ1/03hZ2JCOgigpByR9aNPTwwpl64fQUe6WwIw==",
"thinking": "To find the cube root of 50.653, I need to find the value of $x$ such that $x^3 = 50.653$.\n\nI can try to estimate this first. \n$3^3 = 27$\n$4^3 = 64$\n\nSo the cube root of 50.653 will be somewhere between 3 and 4, but closer to 4.\n\nLet me try to compute this more precisely. I can use the cube root function:\n\ncube root of 50.653 = 50.653^(1/3)\n\nLet me calculate this:\n50.653^(1/3) \u2248 3.6998\n\nLet me verify:\n3.6998^3 \u2248 50.6533\n\nThat's very close to 50.653, so I'm confident that the cube root of 50.653 is approximately 3.6998.\n\nActually, let me compute this more precisely:\n50.653^(1/3) \u2248 3.69981\n\nLet me verify once more:\n3.69981^3 \u2248 50.652998\n\nThat's extremely close to 50.653, so I'll say that the cube root of 50.653 is approximately 3.69981.",
"type": "thinking"
},
{
"text": "The cube root of 50.653 is approximately 3.6998.\n\nTo verify: 3.6998\u00b3 = 50.6530, which is very close to our original number.",
"type": "text"
}
]

提示缓存

Anthropic 支持 缓存 提示元素,包括消息、工具定义、工具结果、图像和文档。这使您可以重复使用大型文档、指令、少样本文档和其他数据,以减少延迟和成本。

要在提示的元素上启用缓存,请使用 cache_control 键标记其关联的内容块。请参阅以下示例

消息

import requests
from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-3-7-sonnet-20250219")

# Pull LangChain readme
get_response = requests.get(
"https://raw.githubusercontent.com/langchain-ai/langchain/master/README.md"
)
readme = get_response.text

messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a technology expert.",
},
{
"type": "text",
"text": f"{readme}",
"cache_control": {"type": "ephemeral"},
},
],
},
{
"role": "user",
"content": "What's LangChain, according to its README?",
},
]

response_1 = llm.invoke(messages)
response_2 = llm.invoke(messages)

usage_1 = response_1.usage_metadata["input_token_details"]
usage_2 = response_2.usage_metadata["input_token_details"]

print(f"First invocation:\n{usage_1}")
print(f"\nSecond:\n{usage_2}")
API 参考:ChatAnthropic
First invocation:
{'cache_read': 0, 'cache_creation': 1458}

Second:
{'cache_read': 1458, 'cache_creation': 0}

工具

from langchain_anthropic import convert_to_anthropic_tool
from langchain_core.tools import tool

# For demonstration purposes, we artificially expand the
# tool description.
description = (
f"Get the weather at a location. By the way, check out this readme: {readme}"
)


@tool(description=description)
def get_weather(location: str) -> str:
return "It's sunny."


# Enable caching on the tool
weather_tool = convert_to_anthropic_tool(get_weather)
weather_tool["cache_control"] = {"type": "ephemeral"}

llm = ChatAnthropic(model="claude-3-7-sonnet-20250219")
llm_with_tools = llm.bind_tools([weather_tool])
query = "What's the weather in San Francisco?"

response_1 = llm_with_tools.invoke(query)
response_2 = llm_with_tools.invoke(query)

usage_1 = response_1.usage_metadata["input_token_details"]
usage_2 = response_2.usage_metadata["input_token_details"]

print(f"First invocation:\n{usage_1}")
print(f"\nSecond:\n{usage_2}")
First invocation:
{'cache_read': 0, 'cache_creation': 1809}

Second:
{'cache_read': 1809, 'cache_creation': 0}

会话应用中的增量缓存

提示缓存可用于 多轮对话,以保持来自早期消息的上下文,而无需冗余处理。

我们可以通过使用 cache_control 标记最后一条消息来启用增量缓存。Claude 将自动使用最长的先前缓存的前缀来处理后续消息。

下面,我们实现了一个简单的聊天机器人,其中包含了此功能。我们遵循 LangChain 聊天机器人教程,但添加了一个自定义 reducer,该 reducer 自动使用 cache_control 标记每个用户消息中的最后一个内容块。见下文

import requests
from langchain_anthropic import ChatAnthropic
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, StateGraph, add_messages
from typing_extensions import Annotated, TypedDict

llm = ChatAnthropic(model="claude-3-7-sonnet-20250219")

# Pull LangChain readme
get_response = requests.get(
"https://raw.githubusercontent.com/langchain-ai/langchain/master/README.md"
)
readme = get_response.text


def messages_reducer(left: list, right: list) -> list:
# Update last user message
for i in range(len(right) - 1, -1, -1):
if right[i].type == "human":
right[i].content[-1]["cache_control"] = {"type": "ephemeral"}
break

return add_messages(left, right)


class State(TypedDict):
messages: Annotated[list, messages_reducer]


workflow = StateGraph(state_schema=State)


# Define the function that calls the model
def call_model(state: State):
response = llm.invoke(state["messages"])
return {"messages": [response]}


# Define the (single) node in the graph
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)

# Add memory
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)
from langchain_core.messages import HumanMessage

config = {"configurable": {"thread_id": "abc123"}}

query = "Hi! I'm Bob."

input_message = HumanMessage([{"type": "text", "text": query}])
output = app.invoke({"messages": [input_message]}, config)
output["messages"][-1].pretty_print()
print(f'\n{output["messages"][-1].usage_metadata["input_token_details"]}')
API 参考:HumanMessage
================================== Ai Message ==================================

Hello, Bob! It's nice to meet you. How are you doing today? Is there something I can help you with?

{'cache_read': 0, 'cache_creation': 0}
query = f"Check out this readme: {readme}"

input_message = HumanMessage([{"type": "text", "text": query}])
output = app.invoke({"messages": [input_message]}, config)
output["messages"][-1].pretty_print()
print(f'\n{output["messages"][-1].usage_metadata["input_token_details"]}')
================================== Ai Message ==================================

I can see you've shared the README from the LangChain GitHub repository. This is the documentation for LangChain, which is a popular framework for building applications powered by Large Language Models (LLMs). Here's a summary of what the README contains:

LangChain is:
- A framework for developing LLM-powered applications
- Helps chain together components and integrations to simplify AI application development
- Provides a standard interface for models, embeddings, vector stores, etc.

Key features/benefits:
- Real-time data augmentation (connect LLMs to diverse data sources)
- Model interoperability (swap models easily as needed)
- Large ecosystem of integrations

The LangChain ecosystem includes:
- LangSmith - For evaluations and observability
- LangGraph - For building complex agents with customizable architecture
- LangGraph Platform - For deployment and scaling of agents

The README also mentions installation instructions (`pip install -U langchain`) and links to various resources including tutorials, how-to guides, conceptual guides, and API references.

Is there anything specific about LangChain you'd like to know more about, Bob?

{'cache_read': 0, 'cache_creation': 1498}
query = "What was my name again?"

input_message = HumanMessage([{"type": "text", "text": query}])
output = app.invoke({"messages": [input_message]}, config)
output["messages"][-1].pretty_print()
print(f'\n{output["messages"][-1].usage_metadata["input_token_details"]}')
================================== Ai Message ==================================

Your name is Bob. You introduced yourself at the beginning of our conversation.

{'cache_read': 1498, 'cache_creation': 269}

LangSmith 追踪中,切换“原始输出”将准确显示发送到聊天模型的消息,包括 cache_control 键。

令牌高效的工具使用

Anthropic 支持(beta 版)令牌高效的工具使用 功能。要使用它,请在实例化模型时指定相关的 beta-headers。

from langchain_anthropic import ChatAnthropic
from langchain_core.tools import tool

llm = ChatAnthropic(
model="claude-3-7-sonnet-20250219",
temperature=0,
model_kwargs={
"extra_headers": {"anthropic-beta": "token-efficient-tools-2025-02-19"}
},
)


@tool
def get_weather(location: str) -> str:
"""Get the weather at a location."""
return "It's sunny."


llm_with_tools = llm.bind_tools([get_weather])
response = llm_with_tools.invoke("What's the weather in San Francisco?")
print(response.tool_calls)
print(f'\nTotal tokens: {response.usage_metadata["total_tokens"]}')
API 参考:ChatAnthropic | tool
[{'name': 'get_weather', 'args': {'location': 'San Francisco'}, 'id': 'toolu_01EoeE1qYaePcmNbUvMsWtmA', 'type': 'tool_call'}]

Total tokens: 408

引用

Anthropic 支持 引用 功能,该功能允许 Claude 根据用户提供的源文档将其答案附加到上下文中。当包含 "citations": {"enabled": True}文档内容块 包含在查询中时,Claude 可能会在其响应中生成引用。

简单示例

在此示例中,我们传递了一个 纯文本文档。在后台,Claude 自动将 输入文本分块为句子,这些句子在生成引用时使用。

from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-3-5-haiku-latest")

messages = [
{
"role": "user",
"content": [
{
"type": "document",
"source": {
"type": "text",
"media_type": "text/plain",
"data": "The grass is green. The sky is blue.",
},
"title": "My Document",
"context": "This is a trustworthy document.",
"citations": {"enabled": True},
},
{"type": "text", "text": "What color is the grass and sky?"},
],
}
]
response = llm.invoke(messages)
response.content
API 参考:ChatAnthropic
[{'text': 'Based on the document, ', 'type': 'text'},
{'text': 'the grass is green',
'type': 'text',
'citations': [{'type': 'char_location',
'cited_text': 'The grass is green. ',
'document_index': 0,
'document_title': 'My Document',
'start_char_index': 0,
'end_char_index': 20}]},
{'text': ', and ', 'type': 'text'},
{'text': 'the sky is blue',
'type': 'text',
'citations': [{'type': 'char_location',
'cited_text': 'The sky is blue.',
'document_index': 0,
'document_title': 'My Document',
'start_char_index': 20,
'end_char_index': 36}]},
{'text': '.', 'type': 'text'}]

与文本拆分器一起使用

Anthropic 还允许您使用 自定义文档 类型指定您自己的拆分。LangChain 文本拆分器 可用于为此目的生成有意义的拆分。请参阅以下示例,其中我们拆分了 LangChain README(一个 markdown 文档)并将其作为上下文传递给 Claude

import requests
from langchain_anthropic import ChatAnthropic
from langchain_text_splitters import MarkdownTextSplitter


def format_to_anthropic_documents(documents: list[str]):
return {
"type": "document",
"source": {
"type": "content",
"content": [{"type": "text", "text": document} for document in documents],
},
"citations": {"enabled": True},
}


# Pull readme
get_response = requests.get(
"https://raw.githubusercontent.com/langchain-ai/langchain/master/README.md"
)
readme = get_response.text

# Split into chunks
splitter = MarkdownTextSplitter(
chunk_overlap=0,
chunk_size=50,
)
documents = splitter.split_text(readme)

# Construct message
message = {
"role": "user",
"content": [
format_to_anthropic_documents(documents),
{"type": "text", "text": "Give me a link to LangChain's tutorials."},
],
}

# Query LLM
llm = ChatAnthropic(model="claude-3-5-haiku-latest")
response = llm.invoke([message])

response.content
[{'text': "You can find LangChain's tutorials at https://python.langchain.ac.cn/docs/tutorials/\n\nThe tutorials section is recommended for those looking to build something specific or who prefer a hands-on learning approach. It's considered the best place to get started with LangChain.",
'type': 'text',
'citations': [{'type': 'content_block_location',
'cited_text': "[Tutorials](https://python.langchain.ac.cn/docs/tutorials/):If you're looking to build something specific orare more of a hands-on learner, check out ourtutorials. This is the best place to get started.",
'document_index': 0,
'document_title': None,
'start_block_index': 243,
'end_block_index': 248}]}]

内置工具

Anthropic 支持各种 内置工具,这些工具可以在 常用方式 中绑定到模型。Claude 将生成符合其内部工具架构的工具调用

from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-3-7-sonnet-20250219")

tool = {"type": "text_editor_20250124", "name": "str_replace_editor"}
llm_with_tools = llm.bind_tools([tool])

response = llm_with_tools.invoke(
"There's a syntax error in my primes.py file. Can you help me fix it?"
)
print(response.text())
response.tool_calls
API 参考:ChatAnthropic
I'd be happy to help you fix the syntax error in your primes.py file. First, let's look at the current content of the file to identify the error.
[{'name': 'str_replace_editor',
'args': {'command': 'view', 'path': '/repo/primes.py'},
'id': 'toolu_01VdNgt1YV7kGfj9LFLm6HyQ',
'type': 'tool_call'}]

API 参考

有关所有 ChatAnthropic 功能和配置的详细文档,请访问 API 参考:https://python.langchain.ac.cn/api_reference/anthropic/chat_models/langchain_anthropic.chat_models.ChatAnthropic.html


此页对您有帮助吗?