跳转到主要内容

Google Memorystore for Redis

Google Memorystore for Redis 是一项完全托管的服务,由 Redis 内存数据存储提供支持,用于构建提供亚毫秒级数据访问的应用程序缓存。借助 Memorystore for Redis 的 Langchain 集成,扩展您的数据库应用程序以构建人工智能驱动的体验。

此笔记本介绍了如何使用 Memorystore for Redis 通过 MemorystoreVectorStore 类存储向量嵌入。

GitHub 上了解有关此软件包的更多信息。

Open In Colab

先决条件

开始之前

要运行此笔记本,您需要执行以下操作

🦜🔗 库安装

集成存在于其自己的 langchain-google-memorystore-redis 包中,因此我们需要安装它。

%pip install -upgrade --quiet langchain-google-memorystore-redis langchain

仅限 Colab:取消注释以下单元格以重启内核,或使用按钮重启内核。对于 Vertex AI Workbench,您可以使用顶部的按钮重启终端。

# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython

# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)

☁ 设置您的 Google Cloud 项目

设置您的 Google Cloud 项目,以便您可以在此笔记本中使用 Google Cloud 资源。

如果您不知道您的项目 ID,请尝试以下操作

  • 运行 gcloud config list
  • 运行 gcloud projects list
  • 请参阅支持页面:查找项目 ID
# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.

PROJECT_ID = "my-project-id" # @param {type:"string"}

# Set the project id
!gcloud config set project {PROJECT_ID}

🔐 身份验证

以登录此笔记本的 IAM 用户身份验证到 Google Cloud,以便访问您的 Google Cloud 项目。

  • 如果您使用 Colab 运行此笔记本,请使用下面的单元格并继续。
  • 如果您使用 Vertex AI Workbench,请查看 此处 的设置说明。
from google.colab import auth

auth.authenticate_user()

基本用法

初始化向量索引

import redis
from langchain_google_memorystore_redis import (
DistanceStrategy,
HNSWConfig,
RedisVectorStore,
)

# Connect to a Memorystore for Redis instance
redis_client = redis.from_url("redis://127.0.0.1:6379")

# Configure HNSW index with descriptive parameters
index_config = HNSWConfig(
name="my_vector_index", distance_strategy=DistanceStrategy.COSINE, vector_size=128
)

# Initialize/create the vector store index
RedisVectorStore.init_index(client=redis_client, index_config=index_config)

准备文档

文本在与向量存储交互之前需要进行处理和数值表示。这包括

  • 加载文本:TextLoader 从文件(例如,“state_of_the_union.txt”)获取文本数据。
  • 文本分割:CharacterTextSplitter 将文本分解为较小的块,以便嵌入模型。
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter

loader = TextLoader("./state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

将文档添加到向量存储

在文本准备和嵌入生成之后,以下方法将它们插入到 Redis 向量存储中。

方法 1:用于直接插入的类方法

此方法使用 from_documents 类方法将嵌入创建和插入合并为一个步骤

from langchain_community.embeddings.fake import FakeEmbeddings

embeddings = FakeEmbeddings(size=128)
redis_client = redis.from_url("redis://127.0.0.1:6379")
rvs = RedisVectorStore.from_documents(
docs, embedding=embeddings, client=redis_client, index_name="my_vector_index"
)
API 参考:FakeEmbeddings

方法 2:基于实例的插入

在处理新的或现有的 RedisVectorStore 时,此方法提供了灵活性

  • [可选] 创建 RedisVectorStore 实例:实例化 RedisVectorStore 对象以进行自定义。如果您已经有实例,请继续下一步。
  • 添加带有元数据的文本:向实例提供原始文本和元数据。嵌入生成和插入向量存储会自动处理。
rvs = RedisVectorStore(
client=redis_client, index_name="my_vector_index", embeddings=embeddings
)
ids = rvs.add_texts(
texts=[d.page_content for d in docs], metadatas=[d.metadata for d in docs]
)

执行相似性搜索 (KNN)

填充向量存储后,可以搜索在语义上与查询相似的文本。以下是如何使用带有默认设置的 KNN(K 最近邻)

  • 制定查询:自然语言问题表达搜索意图(例如,“总统关于 Ketanji Brown Jackson 说了什么”)。
  • 检索相似结果:similarity_search 方法查找向量存储中在含义上最接近查询的项目。
import pprint

query = "What did the president say about Ketanji Brown Jackson"
knn_results = rvs.similarity_search(query=query)
pprint.pprint(knn_results)

范围查询通过指定所需的相似性阈值以及查询文本来提供更多控制

  • 制定查询:自然语言问题定义搜索意图。
  • 设置相似性阈值:distance_threshold 参数确定匹配项必须有多接近才被认为是相关的。
  • 检索结果:similarity_search_with_score 方法从向量存储中查找相似度在指定阈值内的项。
rq_results = rvs.similarity_search_with_score(query=query, distance_threshold=0.8)
pprint.pprint(rq_results)

MMR 查询旨在查找与查询相关且彼此不同的结果,从而减少搜索结果中的冗余。

  • 制定查询:自然语言问题定义搜索意图。
  • 平衡相关性和多样性:lambda_mult 参数控制严格相关性和促进结果多样性之间的权衡。
  • 检索 MMR 结果:max_marginal_relevance_search 方法返回根据 lambda 设置优化相关性和多样性组合的项。
mmr_results = rvs.max_marginal_relevance_search(query=query, lambda_mult=0.90)
pprint.pprint(mmr_results)

将向量存储用作检索器

为了与其他 LangChain 组件无缝集成,可以将向量存储转换为检索器。 这提供了几个优势

  • LangChain 兼容性:许多 LangChain 工具和方法被设计为直接与检索器交互。
  • 易于使用:as_retriever() 方法将向量存储转换为简化查询的格式。
retriever = rvs.as_retriever()
results = retriever.invoke(query)
pprint.pprint(results)

清理

从向量存储中删除文档

有时,需要从向量存储中删除文档(及其关联的向量)。 delete 方法提供此功能。

rvs.delete(ids)

删除向量索引

在某些情况下,可能需要删除现有向量索引。 常见原因包括

  • 索引配置更改:如果需要修改索引参数,通常需要删除并重新创建索引。
  • 存储管理:删除未使用的索引可以帮助释放 Redis 实例中的空间。

警告:向量索引删除是不可逆的操作。在继续操作之前,请确定不再需要存储的向量和搜索功能。

# Delete the vector index
RedisVectorStore.drop_index(client=redis_client, index_name="my_vector_index")

此页面是否有帮助?