MariaDB
LangChain 的 MariaDB 集成 (langchain-mariadb) 提供了向量功能,用于处理 MariaDB 11.7.1 及更高版本,并根据 MIT 许可证分发。用户可以直接使用提供的实现,或根据特定需求进行定制。主要功能包括:
- 内置向量相似性搜索
- 支持余弦和欧几里得距离度量
- 强大的元数据过滤选项
- 通过连接池优化性能
- 可配置的表和列设置
设置
使用以下命令启动 MariaDB Docker 容器:
!docker run --name mariadb-container -e MARIADB_ROOT_PASSWORD=langchain -e MARIADB_DATABASE=langchain -p 3306:3306 -d mariadb:11.7
安装包
此包使用 SQLAlchemy,但与 MariaDB 连接器配合使用效果最佳,后者需要 C/C++ 组件
# Debian, Ubuntu
!sudo apt install libmariadb3 libmariadb-dev
# CentOS, RHEL, Rocky Linux
!sudo yum install MariaDB-shared MariaDB-devel
# Install Python connector
!pip install -U mariadb
然后安装 langchain-mariadb
包
pip install -U langchain-mariadb
VectorStore 与 LLM 模型配合使用,这里以 langchain-openai
为例。
pip install langchain-openai
export OPENAI_API_KEY=...
初始化
from langchain_core.documents import Document
from langchain_mariadb import MariaDBStore
from langchain_openai import OpenAIEmbeddings
# connection string
url = f"mariadb+mariadbconnector://myuser:mypassword@localhost/langchain"
# Initialize vector store
vectorstore = MariaDBStore(
embeddings=OpenAIEmbeddings(),
embedding_length=1536,
datasource=url,
collection_name="my_docs",
)
API 参考:Document | OpenAIEmbeddings
管理向量存储
添加数据
您可以将数据作为带有元数据的文档添加
docs = [
Document(
page_content="there are cats in the pond",
metadata={"id": 1, "location": "pond", "topic": "animals"},
),
Document(
page_content="ducks are also found in the pond",
metadata={"id": 2, "location": "pond", "topic": "animals"},
),
# More documents...
]
vectorstore.add_documents(docs)
或作为带有可选元数据的纯文本添加
texts = [
"a sculpture exhibit is also at the museum",
"a new coffee shop opened on Main Street",
]
metadatas = [
{"id": 6, "location": "museum", "topic": "art"},
{"id": 7, "location": "Main Street", "topic": "food"},
]
vectorstore.add_texts(texts=texts, metadatas=metadatas)
查询向量存储
# Basic similarity search
results = vectorstore.similarity_search("Hello", k=2)
# Search with metadata filtering
results = vectorstore.similarity_search("Hello", filter={"category": "greeting"})
过滤选项
系统支持对元数据进行各种过滤操作:
- 相等:$eq
- 不相等:$ne
- 比较:$lt, $lte, $gt, $gte
- 列表操作:$in, $nin
- 文本匹配:$like, $nlike
- 逻辑操作:$and, $or, $not
示例
# Search with simple filter
results = vectorstore.similarity_search(
"kitty", k=10, filter={"id": {"$in": [1, 5, 2, 9]}}
)
# Search with multiple conditions (AND)
results = vectorstore.similarity_search(
"ducks",
k=10,
filter={"id": {"$in": [1, 5, 2, 9]}, "location": {"$in": ["pond", "market"]}},
)
检索增强生成的使用
TODO:文档示例
API 参考
有关更多详细信息,请参阅此处的仓库。