跳到主要内容
Open In ColabOpen on GitHub

SAP HANA Cloud 向量引擎

SAP HANA Cloud 向量引擎 是完全集成到 SAP HANA Cloud 数据库中的向量存储。

设置

安装 langchain-hana 外部集成包,以及本笔记本中使用的其他包。

%pip install -qU langchain-hana

凭证

确保您的 SAP HANA 实例正在运行。从环境变量加载您的凭据并创建连接。

import os

from dotenv import load_dotenv
from hdbcli import dbapi

load_dotenv()
# Use connection settings from the environment
connection = dbapi.connect(
address=os.environ.get("HANA_DB_ADDRESS"),
port=os.environ.get("HANA_DB_PORT"),
user=os.environ.get("HANA_DB_USER"),
password=os.environ.get("HANA_DB_PASSWORD"),
autocommit=True,
sslValidateCertificate=False,
)

了解更多关于 SAP HANA 的信息,请参阅什么是 SAP HANA?

初始化

要初始化 HanaDB 向量存储,您需要一个数据库连接和一个嵌入实例。SAP HANA Cloud 向量引擎同时支持外部和内部嵌入。

  • 使用外部嵌入

pip install -qU langchain-openai
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
  • 使用内部嵌入

或者,您可以使用 SAP HANA 的原生 VECTOR_EMBEDDING() 函数直接在其中计算嵌入。要启用此功能,请使用您的内部模型 ID 创建一个 HanaInternalEmbeddings 实例,并将其传递给 HanaDB。请注意,HanaInternalEmbeddings 实例是专门为与 HanaDB 配合使用而设计的,不适用于其他向量存储实现。有关内部嵌入的更多信息,请参阅SAP HANA VECTOR_EMBEDDING 函数

注意: 请确保您的 SAP HANA Cloud 实例已启用 NLP。

from langchain_hana import HanaInternalEmbeddings

embeddings = HanaInternalEmbeddings(internal_embedding_model_id="SAP_NEB.20240715")

一旦您有了连接和嵌入实例,通过将它们与一个用于存储向量的表名一起传递给 HanaDB 来创建向量存储。

from langchain_hana import HanaDB

db = HanaDB(
embedding=embeddings, connection=connection, table_name="STATE_OF_THE_UNION"
)

示例

加载示例文档“state_of_the_union.txt”并从中创建块。

from langchain_community.document_loaders import TextLoader
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

text_documents = TextLoader(
"../../how_to/state_of_the_union.txt", encoding="UTF-8"
).load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
text_chunks = text_splitter.split_documents(text_documents)
print(f"Number of document chunks: {len(text_chunks)}")
Number of document chunks: 88

将加载的文档块添加到表中。对于此示例,我们删除表中可能存在的任何先前运行的内容。

# Delete already existing documents from the table
db.delete(filter={})

# add the loaded document chunks
db.add_documents(text_chunks)
[]

执行查询以从上一步添加的文档块中获取两个最佳匹配的文档块。默认情况下,搜索使用“余弦相似度”。

query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query, k=2)

for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential.

While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.

使用“欧几里得距离”查询相同内容。结果应与“余弦相似度”相同。

from langchain_hana.utils import DistanceStrategy

db = HanaDB(
embedding=embeddings,
connection=connection,
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE,
table_name="STATE_OF_THE_UNION",
)

query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential.

While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.

最大边缘相关性搜索(MMR)

最大边际相关性 优化了与查询的相似性以及所选文档之间的多样性。将从数据库中检索前 20 (fetch_k) 个项目。MMR 算法随后将找到最佳的 2 (k) 个匹配项。

docs = db.max_marginal_relevance_search(query, k=2, fetch_k=20)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland.

In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.

Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world.

创建 HNSW 向量索引

向量索引可以显著加快向量的 top-k 最近邻查询。用户可以使用 create_hnsw_index 函数创建分层可导航小世界 (HNSW) 向量索引。

有关在数据库级别创建索引的更多信息,请参阅官方文档

# HanaDB instance uses cosine similarity as default:
db_cosine = HanaDB(
embedding=embeddings, connection=connection, table_name="STATE_OF_THE_UNION"
)

# Attempting to create the HNSW index with default parameters
db_cosine.create_hnsw_index() # If no other parameters are specified, the default values will be used
# Default values: m=64, ef_construction=128, ef_search=200
# The default index name will be: STATE_OF_THE_UNION_COSINE_SIMILARITY_IDX (verify this naming pattern in HanaDB class)


# Creating a HanaDB instance with L2 distance as the similarity function and defined values
db_l2 = HanaDB(
embedding=embeddings,
connection=connection,
table_name="STATE_OF_THE_UNION",
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, # Specify L2 distance
)

# This will create an index based on L2 distance strategy.
db_l2.create_hnsw_index(
index_name="STATE_OF_THE_UNION_L2_index",
m=100, # Max number of neighbors per graph node (valid range: 4 to 1000)
ef_construction=200, # Max number of candidates during graph construction (valid range: 1 to 100000)
ef_search=500, # Min number of candidates during the search (valid range: 1 to 100000)
)

# Use L2 index to perform MMR
docs = db_l2.max_marginal_relevance_search(query, k=2, fetch_k=20)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland.

In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.

Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world.

要点:

  • 相似性函数:索引的相似性函数默认为余弦相似度。如果您想使用不同的相似性函数(例如,L2 距离),您需要在初始化 HanaDB 实例时指定它。
  • 默认参数:在 create_hnsw_index 函数中,如果用户未提供 mef_constructionef_search 等参数的自定义值,将自动使用默认值(例如,m=64ef_construction=128ef_search=200)。这些值确保在无需用户干预的情况下创建具有合理性能的索引。

基本向量存储操作

db = HanaDB(
connection=connection, embedding=embeddings, table_name="LANGCHAIN_DEMO_BASIC"
)

# Delete already existing documents from the table
db.delete(filter={})
True

我们可以将简单的文本文档添加到现有表中。

docs = [Document(page_content="Some text"), Document(page_content="Other docs")]
db.add_documents(docs)
[]

添加带有元数据的文档。

docs = [
Document(
page_content="foo",
metadata={"start": 100, "end": 150, "doc_name": "foo.txt", "quality": "bad"},
),
Document(
page_content="bar",
metadata={"start": 200, "end": 250, "doc_name": "bar.txt", "quality": "good"},
),
]
db.add_documents(docs)
[]

查询具有特定元数据的文档。

docs = db.similarity_search("foobar", k=2, filter={"quality": "bad"})
# With filtering on "quality"=="bad", only one document should be returned
for doc in docs:
print("-" * 80)
print(doc.page_content)
print(doc.metadata)
--------------------------------------------------------------------------------
foo
{'start': 100, 'end': 150, 'doc_name': 'foo.txt', 'quality': 'bad'}

删除具有特定元数据的文档。

db.delete(filter={"quality": "bad"})

# Now the similarity search with the same filter will return no results
docs = db.similarity_search("foobar", k=2, filter={"quality": "bad"})
print(len(docs))
0

高级筛选

除了基于值的基本筛选功能外,还可以使用更高级的筛选。下表显示了可用的筛选操作符。

运算符语义
$eq相等 (==)
$ne不等 (!=)
$lt小于 (<)
$lte小于或等于 (<=)
$gt大于 (>)
$gte大于或等于 (>=)
$in包含在一组给定值中 (in)
$nin不包含在一组给定值中 (not in)
$between在两个边界值之间
$like基于 SQL 中“LIKE”语义的文本相等性(使用“%”作为通配符)
$contains筛选包含特定关键字的文档
$and逻辑“与”,支持 2 个或更多操作数
$or逻辑“或”,支持 2 个或更多操作数
# Prepare some test documents
docs = [
Document(
page_content="First",
metadata={"name": "Adam Smith", "is_active": True, "id": 1, "height": 10.0},
),
Document(
page_content="Second",
metadata={"name": "Bob Johnson", "is_active": False, "id": 2, "height": 5.7},
),
Document(
page_content="Third",
metadata={"name": "Jane Doe", "is_active": True, "id": 3, "height": 2.4},
),
]

db = HanaDB(
connection=connection,
embedding=embeddings,
table_name="LANGCHAIN_DEMO_ADVANCED_FILTER",
)

# Delete already existing documents from the table
db.delete(filter={})
db.add_documents(docs)


# Helper function for printing filter results
def print_filter_result(result):
if len(result) == 0:
print("<empty result>")
for doc in result:
print(doc.metadata)

使用 $ne$gt$gte$lt$lte 进行筛选

advanced_filter = {"id": {"$ne": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"id": {"$gt": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"id": {"$gte": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"id": {"$lt": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"id": {"$lte": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'id': {'$ne': 1}}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'id': {'$gt': 1}}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'id': {'$gte': 1}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'id': {'$lt': 1}}
<empty result>
Filter: {'id': {'$lte': 1}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}

使用 $between$in$nin 进行筛选

advanced_filter = {"id": {"$between": (1, 2)}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$in": ["Adam Smith", "Bob Johnson"]}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$nin": ["Adam Smith", "Bob Johnson"]}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'id': {'$between': (1, 2)}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'name': {'$in': ['Adam Smith', 'Bob Johnson']}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'name': {'$nin': ['Adam Smith', 'Bob Johnson']}}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}

使用 $like 进行文本筛选

advanced_filter = {"name": {"$like": "a%"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$like": "%a%"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'name': {'$like': 'a%'}}
<empty result>
Filter: {'name': {'$like': '%a%'}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}

使用 $contains 进行文本筛选

advanced_filter = {"name": {"$contains": "bob"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$contains": "bo"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$contains": "Adam Johnson"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"name": {"$contains": "Adam Smith"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'name': {'$contains': 'bob'}}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'name': {'$contains': 'bo'}}
<empty result>
Filter: {'name': {'$contains': 'Adam Johnson'}}
<empty result>
Filter: {'name': {'$contains': 'Adam Smith'}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}

使用 $and$or 组合筛选

advanced_filter = {"$or": [{"id": 1}, {"name": "bob"}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"$and": [{"id": 1}, {"id": 2}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {"$or": [{"id": 1}, {"id": 2}, {"id": 3}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))

advanced_filter = {
"$and": [{"name": {"$contains": "bob"}}, {"name": {"$contains": "johnson"}}]
}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'$or': [{'id': 1}, {'name': 'bob'}]}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
Filter: {'$and': [{'id': 1}, {'id': 2}]}
<empty result>
Filter: {'$or': [{'id': 1}, {'id': 2}, {'id': 3}]}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'$and': [{'name': {'$contains': 'bob'}}, {'name': {'$contains': 'johnson'}}]}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}

在链中使用 VectorStore 作为检索器进行检索增强生成 (RAG)

# Access the vector DB with a new table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name="LANGCHAIN_DEMO_RETRIEVAL_CHAIN",
)

# Delete already existing entries from the table
db.delete(filter={})

# add the loaded document chunks from the "State Of The Union" file
db.add_documents(text_chunks)

# Create a retriever instance of the vector store
retriever = db.as_retriever()

定义提示。

from langchain_core.prompts import PromptTemplate

prompt_template = """
You are an expert in state of the union topics. You are provided multiple context items that are related to the prompt you have to answer.
Use the following pieces of context to answer the question at the end.

'''
{context}
'''

Question: {question}
"""

PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
API 参考:PromptTemplate

创建 ConversationalRetrievalChain,它处理聊天历史和检索要添加到提示中的类似文档块。

from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo")
memory = ConversationBufferMemory(
memory_key="chat_history", output_key="answer", return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
db.as_retriever(search_kwargs={"k": 5}),
return_source_documents=True,
memory=memory,
verbose=False,
combine_docs_chain_kwargs={"prompt": PROMPT},
)

提出第一个问题(并验证已使用了多少文本块)。

question = "What about Mexico and Guatemala?"

result = qa_chain.invoke({"question": question})
print("Answer from LLM:")
print("================")
print(result["answer"])

source_docs = result["source_documents"]
print("================")
print(f"Number of used source document chunks: {len(source_docs)}")
Answer from LLM:
================
The United States has set up joint patrols with Mexico and Guatemala to catch more human traffickers at the border. This collaborative effort aims to improve border security and combat illegal activities such as human trafficking.
================
Number of used source document chunks: 5

详细检查链中使用的块。检查排名最高的块是否包含问题中提到的“墨西哥和危地马拉”信息。

for doc in source_docs:
print("-" * 80)
print(doc.page_content)
print(doc.metadata)

在相同的对话链上提出另一个问题。答案应与之前给出的答案相关。

question = "How many casualties were reported after that?"

result = qa_chain.invoke({"question": question})
print("Answer from LLM:")
print("================")
print(result["answer"])
Answer from LLM:
================
Countries like Mexico and Guatemala are participating in joint patrols to catch human traffickers. The United States is also working with partners in South and Central America to host more refugees and secure their borders. Additionally, the U.S. is working with twenty-seven members of the European Union, as well as countries like France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and Switzerland.

标准表与带向量数据的“自定义”表

默认情况下,嵌入表将创建 3 列:

  • 一列 VEC_TEXT,包含文档的文本
  • 一列 VEC_META,包含文档的元数据
  • 一列 VEC_VECTOR,包含文档文本的嵌入向量
# Access the vector DB with a new table
db = HanaDB(
connection=connection, embedding=embeddings, table_name="LANGCHAIN_DEMO_NEW_TABLE"
)

# Delete already existing entries from the table
db.delete(filter={})

# Add a simple document with some metadata
docs = [
Document(
page_content="A simple document",
metadata={"start": 100, "end": 150, "doc_name": "simple.txt"},
)
]
db.add_documents(docs)
[]

显示表“LANGCHAIN_DEMO_NEW_TABLE”中的列

cur = connection.cursor()
cur.execute(
"SELECT COLUMN_NAME, DATA_TYPE_NAME FROM SYS.TABLE_COLUMNS WHERE SCHEMA_NAME = CURRENT_SCHEMA AND TABLE_NAME = 'LANGCHAIN_DEMO_NEW_TABLE'"
)
rows = cur.fetchall()
for row in rows:
print(row)
cur.close()
('VEC_META', 'NCLOB')
('VEC_TEXT', 'NCLOB')
('VEC_VECTOR', 'REAL_VECTOR')

显示插入文档在三列中的值

cur = connection.cursor()
cur.execute(
"SELECT VEC_TEXT, VEC_META, TO_NVARCHAR(VEC_VECTOR) FROM LANGCHAIN_DEMO_NEW_TABLE LIMIT 1"
)
rows = cur.fetchall()
print(rows[0][0]) # The text
print(rows[0][1]) # The metadata
print(rows[0][2]) # The vector
cur.close()

自定义表必须至少有三列与标准表的语义匹配

  • 一列类型为 NCLOBNVARCHAR,用于嵌入的文本/上下文
  • 一列类型为 NCLOBNVARCHAR,用于元数据
  • 一列类型为 REAL_VECTOR,用于嵌入向量

该表可以包含附加列。当新文档插入到表中时,这些附加列必须允许 NULL 值。

# Create a new table "MY_OWN_TABLE_ADD" with three "standard" columns and one additional column
my_own_table_name = "MY_OWN_TABLE_ADD"
cur = connection.cursor()
cur.execute(
(
f"CREATE TABLE {my_own_table_name} ("
"SOME_OTHER_COLUMN NVARCHAR(42), "
"MY_TEXT NVARCHAR(2048), "
"MY_METADATA NVARCHAR(1024), "
"MY_VECTOR REAL_VECTOR )"
)
)

# Create a HanaDB instance with the own table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name=my_own_table_name,
content_column="MY_TEXT",
metadata_column="MY_METADATA",
vector_column="MY_VECTOR",
)

# Add a simple document with some metadata
docs = [
Document(
page_content="Some other text",
metadata={"start": 400, "end": 450, "doc_name": "other.txt"},
)
]
db.add_documents(docs)

# Check if data has been inserted into our own table
cur.execute(f"SELECT * FROM {my_own_table_name} LIMIT 1")
rows = cur.fetchall()
print(rows[0][0]) # Value of column "SOME_OTHER_DATA". Should be NULL/None
print(rows[0][1]) # The text
print(rows[0][2]) # The metadata
print(rows[0][3]) # The vector

cur.close()
None
Some other text
{"start": 400, "end": 450, "doc_name": "other.txt"}
<memory at 0x110f856c0>

添加另一个文档并在自定义表上执行相似性搜索。

docs = [
Document(
page_content="Some more text",
metadata={"start": 800, "end": 950, "doc_name": "more.txt"},
)
]
db.add_documents(docs)

query = "What's up?"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
Some more text
--------------------------------------------------------------------------------
Some other text

使用自定义列优化筛选性能

为了允许灵活的元数据值,所有元数据默认以 JSON 格式存储在元数据列中。如果已知某些使用的元数据键和值类型,则可以通过创建目标表并将键名作为列名,并通过 specific_metadata_columns 列表将其传递给 HanaDB 构造函数,从而将其存储在附加列中。匹配这些值的元数据键在插入时会复制到特殊列中。筛选器使用特殊列而不是元数据 JSON 列来处理 specific_metadata_columns 列表中的键。

# Create a new table "PERFORMANT_CUSTOMTEXT_FILTER" with three "standard" columns and one additional column
my_own_table_name = "PERFORMANT_CUSTOMTEXT_FILTER"
cur = connection.cursor()
cur.execute(
(
f"CREATE TABLE {my_own_table_name} ("
"CUSTOMTEXT NVARCHAR(500), "
"MY_TEXT NVARCHAR(2048), "
"MY_METADATA NVARCHAR(1024), "
"MY_VECTOR REAL_VECTOR )"
)
)

# Create a HanaDB instance with the own table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name=my_own_table_name,
content_column="MY_TEXT",
metadata_column="MY_METADATA",
vector_column="MY_VECTOR",
specific_metadata_columns=["CUSTOMTEXT"],
)

# Add a simple document with some metadata
docs = [
Document(
page_content="Some other text",
metadata={
"start": 400,
"end": 450,
"doc_name": "other.txt",
"CUSTOMTEXT": "Filters on this value are very performant",
},
)
]
db.add_documents(docs)

# Check if data has been inserted into our own table
cur.execute(f"SELECT * FROM {my_own_table_name} LIMIT 1")
rows = cur.fetchall()
print(
rows[0][0]
) # Value of column "CUSTOMTEXT". Should be "Filters on this value are very performant"
print(rows[0][1]) # The text
print(
rows[0][2]
) # The metadata without the "CUSTOMTEXT" data, as this is extracted into a sperate column
print(rows[0][3]) # The vector

cur.close()
Filters on this value are very performant
Some other text
{"start": 400, "end": 450, "doc_name": "other.txt", "CUSTOMTEXT": "Filters on this value are very performant"}
<memory at 0x110f859c0>

这些特殊列对 Langchain 接口的其余部分是完全透明的。一切都像以前一样工作,只是性能更高。

docs = [
Document(
page_content="Some more text",
metadata={
"start": 800,
"end": 950,
"doc_name": "more.txt",
"CUSTOMTEXT": "Another customtext value",
},
)
]
db.add_documents(docs)

advanced_filter = {"CUSTOMTEXT": {"$like": "%value%"}}
query = "What's up?"
docs = db.similarity_search(query, k=2, filter=advanced_filter)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
Some more text
--------------------------------------------------------------------------------
Some other text