StarRocks
StarRocks 是一个高性能分析数据库。
StarRocks
是一个下一代亚秒级 MPP 数据库,适用于全场景分析,包括多维分析、实时分析和即席查询。
通常
StarRocks
被归类为 OLAP,并且在 ClickBench — 分析 DBMS 基准中表现出卓越的性能。由于它具有超快的向量化执行引擎,它也可以用作快速向量数据库。
这里我们将展示如何使用 StarRocks 向量存储。
设置
%pip install --upgrade --quiet pymysql langchain-community
一开始设置 update_vectordb = False
。如果没有文档更新,则我们不需要重建文档的嵌入。
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import (
DirectoryLoader,
UnstructuredMarkdownLoader,
)
from langchain_community.vectorstores import StarRocks
from langchain_community.vectorstores.starrocks import StarRocksSettings
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import TokenTextSplitter
update_vectordb = False
API 参考:RetrievalQA | DirectoryLoader | UnstructuredMarkdownLoader | StarRocks | StarRocksSettings | OpenAI | OpenAIEmbeddings | TokenTextSplitter
/Users/dirlt/utils/py3env/lib/python3.9/site-packages/requests/__init__.py:102: RequestsDependencyWarning: urllib3 (1.26.7) or chardet (5.1.0)/charset_normalizer (2.0.9) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({})/charset_normalizer ({}) doesn't match a supported "
加载文档并将其分割为 token
加载 docs
目录下所有 markdown 文件
对于 StarRocks 文档,您可以从 https://github.com/StarRocks/starrocks 克隆存储库,其中包含 docs
目录。
loader = DirectoryLoader(
"./docs", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader
)
documents = loader.load()
将文档分割为 token,并设置 update_vectordb = True
,因为有新的文档/token。
# load text splitter and split docs into snippets of text
text_splitter = TokenTextSplitter(chunk_size=400, chunk_overlap=50)
split_docs = text_splitter.split_documents(documents)
# tell vectordb to update text embeddings
update_vectordb = True
split_docs[-20]
Document(page_content='Compile StarRocks with Docker\n\nThis topic describes how to compile StarRocks using Docker.\n\nOverview\n\nStarRocks provides development environment images for both Ubuntu 22.04 and CentOS 7.9. With the image, you can launch a Docker container and compile StarRocks in the container.\n\nStarRocks version and DEV ENV image\n\nDifferent branches of StarRocks correspond to different development environment images provided on StarRocks Docker Hub.\n\nFor Ubuntu 22.04:\n\n| Branch name | Image name |\n | --------------- | ----------------------------------- |\n | main | starrocks/dev-env-ubuntu:latest |\n | branch-3.0 | starrocks/dev-env-ubuntu:3.0-latest |\n | branch-2.5 | starrocks/dev-env-ubuntu:2.5-latest |\n\nFor CentOS 7.9:\n\n| Branch name | Image name |\n | --------------- | ------------------------------------ |\n | main | starrocks/dev-env-centos7:latest |\n | branch-3.0 | starrocks/dev-env-centos7:3.0-latest |\n | branch-2.5 | starrocks/dev-env-centos7:2.5-latest |\n\nPrerequisites\n\nBefore compiling StarRocks, make sure the following requirements are satisfied:\n\nHardware\n\n', metadata={'source': 'docs/developers/build-starrocks/Build_in_docker.md'})
print("# docs = %d, # splits = %d" % (len(documents), len(split_docs)))
# docs = 657, # splits = 2802
创建向量数据库实例
使用 StarRocks 作为向量数据库
def gen_starrocks(update_vectordb, embeddings, settings):
if update_vectordb:
docsearch = StarRocks.from_documents(split_docs, embeddings, config=settings)
else:
docsearch = StarRocks(embeddings, settings)
return docsearch
将 token 转换为嵌入并将它们放入向量数据库
这里我们使用 StarRocks 作为向量数据库,您可以通过 StarRocksSettings
配置 StarRocks 实例。
配置 StarRocks 实例很像配置 MySQL 实例。您需要指定
- 主机/端口
- 用户名(默认:'root')
- 密码(默认:'')
- 数据库(默认:'default')
- 表(默认:'langchain')
embeddings = OpenAIEmbeddings()
# configure starrocks settings(host/port/user/pw/db)
settings = StarRocksSettings()
settings.port = 41003
settings.host = "127.0.0.1"
settings.username = "root"
settings.password = ""
settings.database = "zya"
docsearch = gen_starrocks(update_vectordb, embeddings, settings)
print(docsearch)
update_vectordb = False
Inserting data...: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2802/2802 [02:26<00:00, 19.11it/s]
``````output
[92m[1mzya.langchain @ 127.0.0.1:41003[0m
[1musername: root[0m
Table Schema:
----------------------------------------------------------------------------
|[94mname [0m|[96mtype [0m|[96mkey [0m|
----------------------------------------------------------------------------
|[94mid [0m|[96mvarchar(65533) [0m|[96mtrue [0m|
|[94mdocument [0m|[96mvarchar(65533) [0m|[96mfalse [0m|
|[94membedding [0m|[96marray<float> [0m|[96mfalse [0m|
|[94mmetadata [0m|[96mvarchar(65533) [0m|[96mfalse [0m|
----------------------------------------------------------------------------
构建问答并向其提问
llm = OpenAI()
qa = RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=docsearch.as_retriever()
)
query = "is profile enabled by default? if not, how to enable profile?"
resp = qa.run(query)
print(resp)
No, profile is not enabled by default. To enable profile, set the variable `enable_profile` to `true` using the command `set enable_profile = true;`