Typesense
Typesense 是一个开源的内存搜索引擎,您可以自行托管或在 Typesense Cloud 上运行。
Typesense 通过将整个索引存储在 RAM 中(并在磁盘上进行备份)来专注于性能,并通过简化可用选项和设置良好的默认值来专注于提供开箱即用的开发者体验。
它还允许您将基于属性的筛选与向量查询相结合,以获取最相关的文档。
本笔记本展示了如何将 Typesense 用作向量存储。
让我们首先安装我们的依赖项
%pip install --upgrade --quiet typesense openapi-schema-pydantic langchain-openai langchain-community tiktoken
我们想使用 OpenAIEmbeddings
,所以我们必须获取 OpenAI API 密钥。
import getpass
import os
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Typesense
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
让我们导入我们的测试数据集
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
docsearch = Typesense.from_documents(
docs,
embeddings,
typesense_client_params={
"host": "localhost", # Use xxx.a1.typesense.net for Typesense Cloud
"port": "8108", # Use 443 for Typesense Cloud
"protocol": "http", # Use https for Typesense Cloud
"typesense_api_key": "xyz",
"typesense_collection_name": "lang-chain",
},
)
相似性搜索
query = "What did the president say about Ketanji Brown Jackson"
found_docs = docsearch.similarity_search(query)
print(found_docs[0].page_content)
Typesense 作为检索器
Typesense 与所有其他向量存储一样,是使用余弦相似度的 LangChain 检索器。
retriever = docsearch.as_retriever()
retriever
query = "What did the president say about Ketanji Brown Jackson"
retriever.invoke(query)[0]